forked from OAID/Tengine
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ci test add trt classification (OAID#1031)
* ci_test add arm64 tensortRT * ci_test add arm64 tensortRT
- Loading branch information
Showing
5 changed files
with
334 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,296 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* License); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/* | ||
* Copyright (c) 2021, OPEN AI LAB | ||
* Author: [email protected] | ||
*/ | ||
|
||
#include <iostream> | ||
#include <fstream> | ||
#include <sstream> | ||
#include <string> | ||
#include <vector> | ||
#include <cmath> | ||
#include <algorithm> | ||
#include <stdlib.h> | ||
#include <stdio.h> | ||
|
||
#include "common.h" | ||
#include "tengine/c_api.h" | ||
#include "tengine_operations.h" | ||
|
||
#define DEFAULT_IMG_H 224 | ||
#define DEFAULT_IMG_W 224 | ||
#define DEFAULT_SCALE1 1.f | ||
#define DEFAULT_SCALE2 1.f | ||
#define DEFAULT_SCALE3 1.f | ||
#define DEFAULT_MEAN1 104.007 | ||
#define DEFAULT_MEAN2 116.669 | ||
#define DEFAULT_MEAN3 122.679 | ||
#define DEFAULT_LOOP_COUNT 1 | ||
#define DEFAULT_THREAD_COUNT 1 | ||
#define DEFAULT_CPU_AFFINITY 255 | ||
|
||
int float_mismatch(float* current, float* reference, int size) | ||
{ | ||
int ret = 0; | ||
for (int i = 0; i < size; i++) | ||
{ | ||
float tmp = fabs(current[i]) - fabs(reference[i]); | ||
if (fabs(tmp) > 0.001) | ||
{ | ||
fprintf(stderr, "test failed, index:%d, a:%f, b:%f\n", i, current[i], reference[i]); | ||
ret = -1; | ||
} | ||
} | ||
fprintf(stderr, "test pass\n"); | ||
|
||
return ret; | ||
} | ||
|
||
void show_usage() | ||
{ | ||
fprintf( | ||
stderr, | ||
"[Usage]: [-h]\n [-m model_file] [-i image_file]\n [-g img_h,img_w] [-s scale[0],scale[1],scale[2]] [-w " | ||
"mean[0],mean[1],mean[2]] [-r loop_count] [-t thread_count] [-a cpu_affinity]\n"); | ||
fprintf( | ||
stderr, | ||
"\nmobilenet example: \n ./classification -m /path/to/mobilenet.tmfile -i /path/to/img.jpg -g 224,224 -s " | ||
"0.017,0.017,0.017 -w 104.007,116.669,122.679\n"); | ||
} | ||
|
||
int main(int argc, char* argv[]) | ||
{ | ||
int loop_count = DEFAULT_LOOP_COUNT; | ||
int num_thread = DEFAULT_THREAD_COUNT; | ||
int cpu_affinity = DEFAULT_CPU_AFFINITY; | ||
std::string model_name; | ||
std::string model_file; | ||
char* image_file = NULL; | ||
float img_hw[2] = {0.f}; | ||
int img_h = 0; | ||
int img_w = 0; | ||
float mean[3] = {-1.f, -1.f, -1.f}; | ||
float scale[3] = {0.f, 0.f, 0.f}; | ||
|
||
int res; | ||
while ((res = getopt(argc, argv, "m:i:l:g:s:w:r:t:a:h")) != -1) | ||
{ | ||
switch (res) | ||
{ | ||
case 'm': | ||
model_name = optarg; | ||
break; | ||
case 'i': | ||
image_file = optarg; | ||
break; | ||
case 'g': | ||
split(img_hw, optarg, ","); | ||
img_h = (int)img_hw[0]; | ||
img_w = (int)img_hw[1]; | ||
break; | ||
case 's': | ||
split(scale, optarg, ","); | ||
break; | ||
case 'w': | ||
split(mean, optarg, ","); | ||
break; | ||
case 'r': | ||
loop_count = atoi(optarg); | ||
break; | ||
case 't': | ||
num_thread = atoi(optarg); | ||
break; | ||
case 'a': | ||
cpu_affinity = atoi(optarg); | ||
break; | ||
case 'h': | ||
show_usage(); | ||
return 0; | ||
default: | ||
break; | ||
} | ||
} | ||
|
||
model_file = "./models/" + model_name + ".tmfile"; | ||
|
||
/* check files */ | ||
if (model_file.empty()) | ||
{ | ||
fprintf(stderr, "Error: Tengine model file not specified!\n"); | ||
show_usage(); | ||
return -1; | ||
} | ||
|
||
if (image_file == NULL) | ||
{ | ||
fprintf(stderr, "Error: Image file not specified!\n"); | ||
show_usage(); | ||
return -1; | ||
} | ||
|
||
if (!check_file_exist(model_file.c_str()) || !check_file_exist(image_file)) | ||
return -1; | ||
|
||
if (img_h == 0) | ||
{ | ||
img_h = DEFAULT_IMG_H; | ||
fprintf(stderr, "Image height not specified, use default %d\n", img_h); | ||
} | ||
|
||
if (img_w == 0) | ||
{ | ||
img_w = DEFAULT_IMG_W; | ||
fprintf(stderr, "Image width not specified, use default %d\n", img_w); | ||
} | ||
|
||
if (scale[0] == 0.f || scale[1] == 0.f || scale[2] == 0.f) | ||
{ | ||
scale[0] = DEFAULT_SCALE1; | ||
scale[1] = DEFAULT_SCALE2; | ||
scale[2] = DEFAULT_SCALE3; | ||
fprintf(stderr, "Scale value not specified, use default %.1f, %.1f, %.1f\n", scale[0], scale[1], scale[2]); | ||
} | ||
|
||
if (mean[0] == -1.0 || mean[1] == -1.0 || mean[2] == -1.0) | ||
{ | ||
mean[0] = DEFAULT_MEAN1; | ||
mean[1] = DEFAULT_MEAN2; | ||
mean[2] = DEFAULT_MEAN3; | ||
fprintf(stderr, "Mean value not specified, use default %.1f, %.1f, %.1f\n", mean[0], mean[1], mean[2]); | ||
} | ||
|
||
/* set runtime options */ | ||
struct options opt; | ||
opt.num_thread = num_thread; | ||
opt.cluster = TENGINE_CLUSTER_ALL; | ||
opt.precision = TENGINE_MODE_FP32; | ||
opt.affinity = cpu_affinity; | ||
|
||
/* inital tengine */ | ||
if (init_tengine() != 0) | ||
{ | ||
fprintf(stderr, "Initial tengine failed.\n"); | ||
return -1; | ||
} | ||
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version()); | ||
|
||
/* create NVIDIA TensorRT backend */ | ||
context_t trt_context = create_context("trt", 1); | ||
int rtt = add_context_device(trt_context, "TensorRT"); | ||
if (0 > rtt) | ||
{ | ||
fprintf(stderr, "add_context_device NV TensorRT DEVICE failed.\n"); | ||
return -1; | ||
} | ||
|
||
/* create graph, load tengine model xxx.tmfile */ | ||
graph_t graph = create_graph(trt_context, "tengine", model_file.c_str()); | ||
if (NULL == graph) | ||
{ | ||
fprintf(stderr, "Create graph failed.\n"); | ||
return -1; | ||
} | ||
|
||
/* set the shape, data buffer of input_tensor of the graph */ | ||
int img_size = img_h * img_w * 3; | ||
int dims[] = {1, 3, img_h, img_w}; // nchw | ||
std::vector<float> input_data(img_size); | ||
|
||
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0); | ||
if (input_tensor == NULL) | ||
{ | ||
fprintf(stderr, "Get input tensor failed\n"); | ||
return -1; | ||
} | ||
|
||
if (set_tensor_shape(input_tensor, dims, 4) < 0) | ||
{ | ||
fprintf(stderr, "Set input tensor shape failed\n"); | ||
return -1; | ||
} | ||
|
||
if (set_tensor_buffer(input_tensor, input_data.data(), img_size * sizeof(float)) < 0) | ||
{ | ||
fprintf(stderr, "Set input tensor buffer failed\n"); | ||
return -1; | ||
} | ||
|
||
/* prerun graph, set work options(num_thread, cluster, precision) */ | ||
if (prerun_graph_multithread(graph, opt) < 0) | ||
{ | ||
fprintf(stderr, "Prerun multithread graph failed.\n"); | ||
return -1; | ||
} | ||
|
||
/* prepare process input data, set the data mem to input tensor */ | ||
get_input_data(image_file, input_data.data(), img_h, img_w, mean, scale); | ||
|
||
/* run graph */ | ||
double start = get_current_time(); | ||
if (run_graph(graph, 1) < 0) | ||
{ | ||
fprintf(stderr, "Run graph failed\n"); | ||
return -1; | ||
} | ||
double end = get_current_time(); | ||
|
||
fprintf(stderr, "\nmodel file : %s\n", model_file.c_str()); | ||
fprintf(stderr, "image file : %s\n", image_file); | ||
fprintf(stderr, "img_h, img_w, scale[3], mean[3] : %d %d , %.3f %.3f %.3f, %.1f %.1f %.1f\n", img_h, img_w, | ||
scale[0], scale[1], scale[2], mean[0], mean[1], mean[2]); | ||
fprintf(stderr, "Inference time %.2f ms\n", end - start); | ||
fprintf(stderr, "--------------------------------------\n"); | ||
|
||
/* get the result of classification */ | ||
tensor_t output_tensor = get_graph_output_tensor(graph, 0, 0); | ||
float* output_data = (float*)get_tensor_buffer(output_tensor); | ||
int output_size = get_tensor_buffer_size(output_tensor) / sizeof(float); | ||
|
||
print_topk(output_data, output_size, 5); | ||
fprintf(stderr, "--------------------------------------\n"); | ||
|
||
/* check the result */ | ||
std::string reference_file = "./data/" + model_name + "_out.bin"; | ||
std::vector<float> reference_data(output_size); | ||
FILE* fp; | ||
fp = fopen(reference_file.c_str(), "rb"); | ||
if (!fp) | ||
{ | ||
fprintf(stderr, "read reference %s failed!\n", reference_file.c_str()); | ||
return -1; | ||
} | ||
if (fread(reference_data.data(), sizeof(float), output_size, fp) == 0) | ||
{ | ||
fprintf(stderr, "read reference data file failed!\n"); | ||
return -1; | ||
} | ||
fclose(fp); | ||
|
||
int ret = float_mismatch(output_data, reference_data.data(), output_size); | ||
|
||
/* release tengine */ | ||
postrun_graph(graph); | ||
destroy_graph(graph); | ||
release_tengine(); | ||
|
||
return ret; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
#!/bin/bash - | ||
|
||
set -x | ||
#cmd_bin="./tests/test_model_classification" | ||
#if [[ $1 == "trt" ]];then | ||
cmd_bin="./tests/test_trt_model_classification" | ||
#fi | ||
test_models=( | ||
" $cmd_bin -m squeezenet -i images/cat.jpg -g 227,227 -w 104.007,116.669,122.679 -s 1,1,1" | ||
" $cmd_bin -m mobilenet -i images/cat.jpg -g 224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017" | ||
" $cmd_bin -m mobilenet_v2 -i images/cat.jpg -g 224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017" | ||
" $cmd_bin -m googlenet -i images/cat.jpg -g 224,224 -w 104.007,116.669,122.679 -s 1,1,1" | ||
" $cmd_bin -m inception_v3 -i images/cat.jpg -g 395,395 -w 104.007,116.669,122.679 -s 0.0078,0.0078,0.0078" | ||
" $cmd_bin -m inception_v4 -i images/cat.jpg -g 299,299 -w 104.007,116.669,122.679 -s 0.007843,0.007843,0.007843" | ||
#" $cmd_bin -m resnet50 -i images/bike.jpg -g 224,224 -w 104.007,116.669,122.679 -s 1,1,1" | ||
" $cmd_bin -m mnasnet -i images/cat.jpg -g 224,224 -w 104.007,116.669,122.679 -s 0.017,0.017,0.017" | ||
#" $cmd_bin -m shufflenet_1xg3 -i images/cat.jpg -g 224,224 -w 103.940,116.780,123.680 -s 0.017,0.017,0.017" | ||
#" $cmd_bin -m shufflenet_v2 -i images/cat.jpg -g 224,224 -w 103.940,116.780,123.680 -s 0.00392156,0.00392156,0.00392156" | ||
) | ||
|
||
for (( i = 0 ; i < ${#test_models[@]} ; i++ )) | ||
do | ||
echo ${test_models[$i]} | ||
echo ${test_models[$i]} | xargs -i sh -c "{}" | ||
|
||
if [ "$?" != 0 ]; then | ||
echo "failed" | ||
exit 1 | ||
fi | ||
done |