-
Notifications
You must be signed in to change notification settings - Fork 111
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add cogvideo draft #1072
Draft
lixiang007666
wants to merge
4
commits into
main
Choose a base branch
from
Add_cogvideo
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Draft
Add cogvideo draft #1072
Changes from 1 commit
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
RUN: | ||
|
||
python3 onediff_diffusers_extensions/examples/cog/text_to_image_cog.py --model /data0/hf_models/CogVideoX-2b --compiler nexfort --compiler-config '{"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": false, "triton.fuse_attention_allow_fp16_reduction": false}}' |
193 changes: 193 additions & 0 deletions
193
onediff_diffusers_extensions/examples/cog/text_to_image_cog.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
import argparse | ||
import json | ||
import time | ||
from typing import Union, List | ||
|
||
import PIL | ||
import imageio | ||
import numpy as np | ||
import torch | ||
|
||
from diffusers import CogVideoXPipeline | ||
from onediffx import compile_pipe, quantize_pipe | ||
|
||
|
||
def export_to_video_imageio( | ||
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8 | ||
) -> str: | ||
""" | ||
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX) | ||
""" | ||
if output_video_path is None: | ||
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name | ||
if isinstance(video_frames[0], PIL.Image.Image): | ||
video_frames = [np.array(frame) for frame in video_frames] | ||
with imageio.get_writer(output_video_path, fps=fps) as writer: | ||
for frame in video_frames: | ||
writer.append_data(frame) | ||
return output_video_path | ||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description="Use onediif to accelerate image generation with CogVideoX" | ||
) | ||
parser.add_argument( | ||
"--model", | ||
type=str, | ||
default="THUDM/CogVideoX-2b", | ||
help="Model path or identifier.", | ||
) | ||
parser.add_argument( | ||
"--compiler", | ||
type=str, | ||
default="none", | ||
help="Compiler backend to use. Options: 'none', 'nexfort'", | ||
) | ||
parser.add_argument( | ||
"--compiler-config", type=str, help="JSON string for compiler config." | ||
) | ||
parser.add_argument( | ||
"--quantize-config", type=str, help="JSON string for quantization config." | ||
) | ||
parser.add_argument( | ||
"--prompt", | ||
type=str, | ||
default='In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.', | ||
help="Prompt for the image generation.", | ||
) | ||
parser.add_argument( | ||
"--guidance_scale", | ||
type=float, | ||
default=6.5, | ||
help="The scale factor for the guidance.", | ||
) | ||
parser.add_argument( | ||
"--num-inference-steps", type=int, default=50, help="Number of inference steps." | ||
) | ||
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt") | ||
parser.add_argument( | ||
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved" | ||
) | ||
parser.add_argument( | ||
"--seed", type=int, default=66, help="Seed for random number generation." | ||
) | ||
parser.add_argument( | ||
"--warmup-iterations", | ||
type=int, | ||
default=1, | ||
help="Number of warm-up iterations before actual inference.", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
args = parse_args() | ||
|
||
device = torch.device("cuda") | ||
|
||
|
||
class CogVideoGenerator: | ||
def __init__( | ||
self, model, compiler_config=None, quantize_config=None, compiler="none" | ||
): | ||
self.pipe = CogVideoXPipeline.from_pretrained( | ||
model, torch_dtype=torch.float16, variant="fp16" | ||
).to(device) | ||
|
||
self.prompt_embeds = None | ||
|
||
if compiler == "nexfort": | ||
if compiler_config: | ||
print("nexfort backend compile...") | ||
self.pipe = self.compile_pipe(self.pipe, compiler_config) | ||
|
||
if quantize_config: | ||
print("nexfort backend quant...") | ||
self.pipe = self.quantize_pipe(self.pipe, quantize_config) | ||
|
||
def encode_prompt(self, prompt, num_videos_per_prompt): | ||
self.prompt_embeds, _ = self.pipe.encode_prompt( | ||
prompt=prompt, | ||
negative_prompt=None, | ||
do_classifier_free_guidance=True, | ||
num_videos_per_prompt=num_videos_per_prompt, | ||
max_sequence_length=226, | ||
device=device, | ||
dtype=torch.float16, | ||
) | ||
|
||
def warmup(self, gen_args, warmup_iterations): | ||
warmup_args = gen_args.copy() | ||
|
||
warmup_args["generator"] = torch.Generator(device=device).manual_seed(0) | ||
|
||
print("Starting warmup...") | ||
start_time = time.time() | ||
|
||
for _ in range(warmup_iterations): | ||
self.pipe(**warmup_args) | ||
|
||
end_time = time.time() | ||
print("Warmup complete.") | ||
print(f"Warmup time: {end_time - start_time:.2f} seconds") | ||
|
||
def generate(self, gen_args): | ||
gen_args["generator"] = torch.Generator(device=device).manual_seed(args.seed) | ||
|
||
# Run the model | ||
start_time = time.time() | ||
video = self.pipe(**gen_args).frames[0] | ||
end_time = time.time() | ||
|
||
export_to_video_imageio(video, args.output_path, fps=8) | ||
|
||
return video, end_time - start_time | ||
|
||
def compile_pipe(self, pipe, compiler_config): | ||
options = compiler_config | ||
pipe = compile_pipe( | ||
pipe, backend="nexfort", options=options, fuse_qkv_projections=True | ||
) | ||
return pipe | ||
|
||
def quantize_pipe(self, pipe, quantize_config): | ||
pipe = quantize_pipe(pipe, ignores=[], **quantize_config) | ||
return pipe | ||
|
||
|
||
def main(): | ||
nexfort_compiler_config = ( | ||
json.loads(args.compiler_config) if args.compiler_config else None | ||
) | ||
nexfort_quantize_config = ( | ||
json.loads(args.quantize_config) if args.quantize_config else None | ||
) | ||
|
||
CogVideo = CogVideoGenerator( | ||
args.model, | ||
nexfort_compiler_config, | ||
nexfort_quantize_config, | ||
compiler=args.compiler, | ||
) | ||
|
||
CogVideo.encode_prompt(args.prompt, args.num_videos_per_prompt) | ||
|
||
gen_args = { | ||
"prompt_embeds": CogVideo.prompt_embeds, | ||
"num_inference_steps": args.num_inference_steps, | ||
"guidance_scale": args.guidance_scale, | ||
"negative_prompt_embeds": torch.zeros_like(CogVideo.prompt_embeds), # Not Supported negative prompt | ||
"num_frames": 8, | ||
} | ||
|
||
CogVideo.warmup(gen_args, args.warmup_iterations) | ||
|
||
_, inference_time = CogVideo.generate(gen_args) | ||
print( | ||
f"Generated video saved to {args.output_path} in {inference_time:.2f} seconds." | ||
) | ||
cuda_mem_after_used = torch.cuda.max_memory_allocated() / (1024**3) | ||
print(f"Max used CUDA memory : {cuda_mem_after_used:.3f}GiB") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add missing import for
tempfile
.The
tempfile
module is used in theexport_to_video_imageio
function but is not imported, leading to a runtime error.+ import tempfile
Committable suggestion