Skip to content

sollano/forestmangr

Repository files navigation

CRAN_Status_Badge Project Status: Active – The project has reached a stable, usable state and is being actively developed. PayPal donate button

forestmangr

Processing forest inventory data with methods such as simple random sampling, stratified random sampling and systematic sampling. There are also functions for yield and growth predictions and model fitting, linear and non linear grouped data fitting, and statistical tests.

If you need any help, I’m available for consulting. If you find forestmangr useful, please consider supporting my efforts in developing this open-source R package for the forestry community!

Installation

To install the stable CRAN version, use:

install.packages("forestmangr")

Or you can install forestmangr from github, for the latest dev version with:

# install.packages("devtools")
devtools::install_github("sollano/forestmangr")

Example

library(forestmangr)
library(dplyr)
data("exfm16")
head(exfm16)
#> # A tibble: 6 x 7
#>   strata  plot   age    DH     N     V     B
#>    <int> <int> <dbl> <dbl> <int> <dbl> <dbl>
#> 1      1     1  26.4  12.4  1020  19.7   5.7
#> 2      1     1  38.4  17.2  1020  60.8   9.8
#> 3      1     1  51.6  19.1  1020 103.   13.9
#> 4      1     1  63.6  21.8  1020 136.   15.3
#> 5      1     2  26.4  15     900  27.3   6  
#> 6      1     2  38.4  20.3   900  80    10.5

Now, we can fit a model for Site estimatation. With nls_table, we can fit a non-linear model, extract it’s coefficients, and merge it with the original data in one line. Here we’ll use Chapman & Richards model:

age_i <- 64
exfm16_fit <- exfm16 %>%
  nls_table(DH ~ b0 * (1-exp(-b1* age))^b2, mod_start = c( b0=23, b1=0.03, b2 = 1.3), output="merge") %>% 
  mutate(site = DH *( ( (1- exp( -b1/age ))^b2 ) / (( 1 - exp(-b1/age_i))^b2 ))) %>% 
  select(-b0,-b1,-b2)
head(exfm16_fit)
#>   strata plot  age   DH    N     V    B     site
#> 1      1    1 26.4 12.4 1020  19.7  5.7 22.48027
#> 2      1    1 38.4 17.2 1020  60.8  9.8 24.24290
#> 3      1    1 51.6 19.1 1020 103.4 13.9 22.07375
#> 4      1    1 63.6 21.8 1020 136.5 15.3 21.89203
#> 5      1    2 26.4 15.0  900  27.3  6.0 27.19388
#> 6      1    2 38.4 20.3  900  80.0 10.5 28.61226

Now, to fit Clutter’s model, we can use the fit_clutter function, indicating the DH, B, V, site and Plot variable names:

coefs_clutter <- fit_clutter(exfm16_fit, "age", "DH", "B", "V", "site", "plot")
coefs_clutter
#>         b0        b1        b2       b3       a0         a1
#> 1 1.398861 -28.84038 0.0251075 1.241779 1.883471 0.05012873

Now, say we wanted to do a Simple Random Sampling Forest Inventory, with 20% as a accepted error. First, let’s load the package and some data:

library(forestmangr)
data("exfm2")
data("exfm3")
data("exfm4")
head(exfm3,10)
#> # A tibble: 10 x 3
#>    TOTAL_AREA PLOT_AREA   VWB
#>         <dbl>     <int> <int>
#>  1       46.8      3000    41
#>  2       46.8      3000    33
#>  3       46.8      3000    24
#>  4       46.8      3000    31
#>  5       46.8      3000    10
#>  6       46.8      3000    32
#>  7       46.8      3000    62
#>  8       46.8      3000    16
#>  9       46.8      3000    66
#> 10       46.8      3000    25

First we should try a pilot inventory, to see if the number of plots sampled is enough for reaching the desired error:

sprs(exfm3, "VWB", "PLOT_AREA", "TOTAL_AREA", error = 20, pop = "fin")
#>                                        Variables    Values
#> 1              Total number of sampled plots (n)   10.0000
#> 2                    Number of maximum plots (N)  156.0000
#> 3                      Variance Quoeficient (VC)   53.2670
#> 4                                      t-student    2.2622
#> 5                         recalculated t-student    2.0452
#> 6  Number of samples regarding the admited error   25.0000
#> 7                                  Variance (S2)  328.0000
#> 8                         Standard deviation (s)   18.1108
#> 9                                       Mean (Y)   34.0000
#> 10               Standard error of the mean (Sy)    5.5405
#> 11                                Absolute Error   12.5335
#> 12                            Relative Error (%)   36.8634
#> 13                  Estimated Total Value (Yhat) 5304.0000
#> 14                                   Total Error 1955.2326
#> 15             Inferior Confidence Interval (m3)   21.4665
#> 16             Superior Confidence Interval (m3)   46.5335
#> 17          Inferior Confidence Interval (m3/ha)   71.5549
#> 18          Superior Confidence Interval (m3/ha)  155.1118
#> 19       inferior Total Confidence Interval (m3) 3348.7674
#> 20       Superior Total Confidence Interval (m3) 7259.2326

We can see that we have 10 plots, but 15 more are needed if we want a minimum of 20% error. The exfm4 data has new samples, that we now can use to run a definitive inventory:

sprs(exfm4, "VWB", "PLOT_AREA", "TOTAL_AREA", error = 20, pop = "fin")
#>                                        Variables    Values
#> 1              Total number of sampled plots (n)   25.0000
#> 2                    Number of maximum plots (N)  156.0000
#> 3                      Variance Quoeficient (VC)   45.4600
#> 4                                      t-student    2.0639
#> 5                         recalculated t-student    2.0930
#> 6  Number of samples regarding the admited error   20.0000
#> 7                                  Variance (S2)  226.6933
#> 8                         Standard deviation (s)   15.0563
#> 9                                       Mean (Y)   33.1200
#> 10               Standard error of the mean (Sy)    2.7595
#> 11                                Absolute Error    5.6952
#> 12                            Relative Error (%)   17.1957
#> 13                  Estimated Total Value (Yhat) 5166.7200
#> 14                                   Total Error  888.4555
#> 15             Inferior Confidence Interval (m3)   27.4248
#> 16             Superior Confidence Interval (m3)   38.8152
#> 17          Inferior Confidence Interval (m3/ha)   91.4159
#> 18          Superior Confidence Interval (m3/ha)  129.3841
#> 19       inferior Total Confidence Interval (m3) 4278.2645
#> 20       Superior Total Confidence Interval (m3) 6055.1755

The desired error was met.

The exfm2 data has a strata variable. Say we wanted to run a SRS inventory for every stand. We can do this with the .groups argument:

head(exfm2,10)
#> # A tibble: 10 x 4
#>    STRATA STRATA_AREA PLOT_AREA   VWB
#>     <int>       <dbl>     <int> <dbl>
#>  1      1        14.4      1000  7.9 
#>  2      1        14.4      1000  3.8 
#>  3      1        14.4      1000  4.4 
#>  4      1        14.4      1000  6.25
#>  5      1        14.4      1000  5.55
#>  6      1        14.4      1000  8.1 
#>  7      1        14.4      1000  6.1 
#>  8      1        14.4      1000  6.6 
#>  9      1        14.4      1000  7.4 
#> 10      1        14.4      1000  5.35
sprs(exfm2, "VWB", "PLOT_AREA", "STRATA_AREA",.groups="STRATA", error = 20, pop = "fin")
#>                                        Variables  STRATA1   STRATA2   STRATA3
#> 1              Total number of sampled plots (n)  14.0000   20.0000   23.0000
#> 2                    Number of maximum plots (N) 144.0000  164.0000  142.0000
#> 3                      Variance Quoeficient (VC)  24.4785   15.8269   16.7813
#> 4                                      t-student   2.1604    2.0930    2.0739
#> 5                         recalculated t-student   2.4469    4.3027    4.3027
#> 6  Number of samples regarding the admited error   9.0000   11.0000   12.0000
#> 7                                  Variance (S2)   2.1829    3.6161    5.3192
#> 8                         Standard deviation (s)   1.4774    1.9016    2.3063
#> 9                                       Mean (Y)   6.0357   12.0150   13.7435
#> 10               Standard error of the mean (Sy)   0.3752    0.3984    0.4402
#> 11                                Absolute Error   0.8105    0.8339    0.9130
#> 12                            Relative Error (%)  13.4288    6.9409    6.6431
#> 13                  Estimated Total Value (Yhat) 869.1429 1970.4600 1951.5739
#> 14                                   Total Error 116.7157  136.7670  129.6455
#> 15             Inferior Confidence Interval (m3)   5.2252   11.1811   12.8305
#> 16             Superior Confidence Interval (m3)   6.8462   12.8489   14.6565
#> 17          Inferior Confidence Interval (m3/ha)  52.2519  111.8105  128.3048
#> 18          Superior Confidence Interval (m3/ha)  68.4624  128.4895  146.5647
#> 19       inferior Total Confidence Interval (m3) 752.4271 1833.6930 1821.9284
#> 20       Superior Total Confidence Interval (m3) 985.8586 2107.2270 2081.2194

We can also run a stratified random sampling inventory with this data:

strs(exfm2, "VWB", "PLOT_AREA", "STRATA_AREA", "STRATA", error = 20, pop = "fin")
#> $Table1
#>                                             Variables  STRATA 1  STRATA 2
#> 1                                           Plot Area 1000.0000 1000.0000
#> 2            Number of sampled plots per stratum (nj)   14.0000   20.0000
#> 3                   Total number of sampled plots (n)   57.0000   57.0000
#> 4            Number of maximum plots per stratum (Nj)  144.0000  164.0000
#> 5                         Number of maximum plots (N)  450.0000  450.0000
#> 6                                     Nj/N Ratio (Pj)    0.3200    0.3644
#> 7                                   Stratum sum (Eyj)   84.5000  240.3000
#> 8                        Stratum quadratic sum (Eyj2)  538.3950 2955.9100
#> 9                         Mean of Yi per stratum (Yj)    6.0357   12.0150
#> 10                                              PjSj2    0.6985    1.3179
#> 11                                               PjSj    0.4728    0.6930
#> 12                                               PjYj    1.9314    4.3788
#> 13                                          t-student    2.0032    2.0032
#> 14                             recalculated t-student    3.1824    3.1824
#> 15      Number of samples regarding the admited error    8.0000    8.0000
#> 16 Optimal number of samples per stratum (nj optimal)    2.0000    3.0000
#> 17              Optimal number of samples (n optimal)    9.0000    9.0000
#> 18               Total value of Y per stratum (Yhatj)  869.1429 1970.4600
#>     STRATA 3
#> 1  1000.0000
#> 2    23.0000
#> 3    57.0000
#> 4   142.0000
#> 5   450.0000
#> 6     0.3156
#> 7   316.1000
#> 8  4461.3350
#> 9    13.7435
#> 10    1.6785
#> 11    0.7278
#> 12    4.3368
#> 13    2.0032
#> 14    3.1824
#> 15    8.0000
#> 16    4.0000
#> 17    9.0000
#> 18 1951.5739
#> 
#> $Table2
#>                                  Variables     value
#> 1                                t-student    2.0032
#> 2          Standard error of the mean (Sy)    0.2339
#> 3                      Stratified Variance    3.6949
#> 4            Stratified Standard Deviation    1.8936
#> 5                Variance Quoeficient (VC)   17.7851
#> 6                      Stratified Mean (Y)   10.6471
#> 7                           Absolute Error    0.4685
#> 8                       Relative Error (%)    4.4003
#> 9             Estimated Total Value (Yhat) 4791.1768
#> 10                             Total Error  210.8250
#> 11       Inferior Confidence Interval (m3)   10.1786
#> 12       Superior Confidence Interval (m3)   11.1156
#> 13    Inferior Confidence Interval (m3/ha)  101.7856
#> 14    Superior Confidence Interval (m3/ha)  111.1556
#> 15 inferior Total Confidence Interval (m3) 4580.3518
#> 16 Superior Total Confidence Interval (m3) 5002.0018

Citation

To cite this package in publications, use:

ABNT:

BRAGA S. R.; OLIVEIRA, M. L. R.; GORGENS, E. B. forestmangr: Forest Mensuration and Management. R package version 0.9.2, 2020. Disponível em: https://CRAN.R-project.org/package=forestmangr

APA:

Sollano Rabelo Braga, Marcio Leles Romarco de Oliveira and Eric Bastos Gorgens (2020). forestmangr: Forest Mensuration and Management. R package version 0.9.2. https://CRAN.R-project.org/package=forestmangr

License

This project is licensed under the MIT License - see the LICENSE file for details

Acknowledgments

  • This project was developed on the Forest Management Lab, DEF, UFVJM, Diamantina/Minas Gerais - Brazil.

  • This project came to be as a mean to make the life of a forestry engeneer a little easier and pratical. We’d like to thank everyone at UFVJM that has in anyway helped this project grow.

  • We’d like to thank UFVJM, FAPEMIG, CNPq e CAPES for the support.

About

R package for forest mensuration and management

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages