Accompanying code repository for the publication Multivalent Binding Resolved by Fluorescence Proximity Sensing by Schulte et al. (2022). Manuscript submitted for publication.
- Clone the PEPTIDE REACToR repo and follow the installation instructions:
git clone [email protected]:spaenigs/peptidereactor.git
. - Create directory
data/fps/
and insert data (see supplementary data of manuscript). - Copy
nodes/fps
into the node directory. - Replace the original
main.py
with./main.py
(recommended) or add the following rule afteraggregate_directories
:w.add(fps.append_linker.rule( dir_in=f"data/temp/{TOKEN}/{{dataset}}/all/", linker_in="data/{dataset}/data.yaml", dir_out=all_encodings_dir, benchmark_dir=w.benchmark_dir))
- Store peptide names in
data/fps/all_names.txt
and sequences indata/fps/all_peptides.txt
. - Execute
scripts/process_linkers.py
to create the requiredseqs.fasta
andclasses.txt
files. - Execute
main.py
. This will generate all possible encoded datasets, and append the linkers to the encoded sequences. - Execute
scripts/parse_and_add_kd.py
to replace the dummy classes with the actual KD values. - Execute
scripts/regression_final.py
to run the analysis. Replace"data/fps/csv/all_kd/dist_freq_dn_100_dc_100.csv"
with the path to your desired encoded dataset.
- Run
worklflows/process_data.smk
(requires Snakemake, see: https://snakemake.readthedocs.io/en/stable/). - Run
workflows/group_assoc.smk
to visualize the different iterations.