The bnns
package provides tools to fit Bayesian Neural Networks (BNNs)
for regression and classification problems. It is designed to be
flexible, supporting various network architectures, activation
functions, and output types, making it suitable for both simple and
complex data analysis tasks.
- Support for multi-layer neural networks with customizable architecture.
- Choice of activation functions (e.g., sigmoid, ReLU, tanh).
- Outputs for regression (continuous response) and classification (binary and multiclass).
- Choice of prior distributions for weights, biases and sigma (for regression).
- Bayesian inference, providing posterior distributions for predictions and parameters.
- Applications in domains such as clinical trials, predictive modeling, and more.
To install the bnns
package from CRAN, use the following:
install.packages("bnns")
To install the bnns
package from GitHub, use the following:
# Install devtools if not already installed
if (!requireNamespace("devtools", quietly = TRUE)) {
install.packages("devtools")
}
# Install bnns
devtools::install_github("swarnendu-stat/bnns")
We use the iris
data for regression:
head(iris)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
To fit a Bayesian Neural Network:
library(bnns)
iris_bnn <- bnns(Sepal.Length ~ -1 + ., data = iris, L = 1, act_fn = 3, nodes = 4, out_act_fn = 1, chains = 1)
Summarize the fitted model:
summary(iris_bnn)
#> Call:
#> bnns.default(formula = Sepal.Length ~ -1 + ., data = iris, L = 1,
#> nodes = 4, act_fn = 3, out_act_fn = 1, chains = 1)
#>
#> Data Summary:
#> Number of observations: 150
#> Number of features: 6
#>
#> Network Architecture:
#> Number of hidden layers: 1
#> Nodes per layer: 4
#> Activation functions: 3
#> Output activation function: 1
#>
#> Posterior Summary (Key Parameters):
#> mean se_mean sd 2.5% 25% 50%
#> w_out[1] 0.8345667 0.0728930420 0.65030179 -0.4150176 0.38054488 0.7769148
#> w_out[2] -0.3719132 0.4067431773 0.96605220 -1.7062097 -1.03225732 -0.7365945
#> w_out[3] 0.4783495 0.1965466796 0.86504113 -1.2350476 0.02944919 0.5634587
#> w_out[4] 0.4537029 0.3334670001 0.89069977 -1.3791675 0.09313077 0.5518418
#> b_out 2.2082591 0.0614548175 1.18859472 -0.1036760 1.38416657 2.2072194
#> sigma 0.3015085 0.0004831093 0.01804107 0.2693205 0.28895030 0.3013415
#> 75% 97.5% n_eff Rhat
#> w_out[1] 1.2478028 2.1730066 79.589862 1.0254227
#> w_out[2] 0.4680286 1.7548944 5.641059 1.3136052
#> w_out[3] 1.0454306 2.0448172 19.370556 1.1335888
#> w_out[4] 1.0281249 2.0733860 7.134392 1.1997484
#> b_out 3.1573563 4.2214829 374.072451 1.0016806
#> sigma 0.3128869 0.3386066 1394.549362 0.9988699
#>
#> Model Fit Information:
#> Iterations: 1000
#> Warmup: 200
#> Thinning: 1
#> Chains: 1
#>
#> Predictive Performance:
#> RMSE (training): 0.2821305
#> MAE (training): 0.2234606
#>
#> Notes:
#> Check convergence diagnostics for parameters with high R-hat values.
Make predictions using the trained model:
pred <- predict(iris_bnn)
Visualize true vs predicted values for regression:
plot(iris$Sepal.Length, rowMeans(pred), main = "True vs Predicted", xlab = "True Values", ylab = "Predicted Values")
abline(0, 1, col = "red")
Use bnns
for regression analysis to model continuous outcomes, such as
predicting patient biomarkers in clinical trials.
model <- bnns(Sepal.Length ~ -1 + .,
data = iris, L = 1, act_fn = 3, nodes = 4,
out_act_fn = 1, chains = 1,
prior_weights = list(dist = "uniform", params = list(alpha = -1, beta = 1)),
prior_bias = list(dist = "cauchy", params = list(mu = 0, sigma = 2.5)),
prior_sigma = list(dist = "inv_gamma", params = list(alpha = 1, beta = 1))
)
For binary or multiclass classification, set the out_act_fn
to 2
(binary) or 3
(multiclass). For example:
# Simulate binary classification data
df <- data.frame(
x1 = runif(10), x2 = runif(10),
y = sample(0:1, 10, replace = TRUE)
)
# Fit a binary classification BNN
model <- bnns(y ~ -1 + x1 + x2,
data = df, L = 2, nodes = c(16, 8),
act_fn = c(3, 2), out_act_fn = 2, iter = 1e2,
warmup = 5e1, chains = 1
)
Explore posterior probabilities to estimate treatment effects or success probabilities in clinical trials. For example, calculate the posterior probability of achieving a clinically meaningful outcome in a given population.
- Detailed vignettes are available to guide through various applications of the package.
- See
help(bnns)
for more information about thebnns
function and its arguments.
Contributions are welcome! Please raise issues or submit pull requests on GitHub.
This package is licensed under the Apache License. See LICENSE
for
details.