-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathISDH.py
127 lines (94 loc) · 3.93 KB
/
ISDH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from utils.tools import *
from network import *
import os
import torch
import torch.optim as optim
import time
import numpy as np
torch.multiprocessing.set_sharing_strategy('file_system')
# ISDH(arxiv2018)
# paper [Instance Similarity Deep Hashing for Multi-Label Image Retrieval](https://arxiv.org/abs/1803.02987v1)
# code [ISDH-Tensorflow](https://github.com/pectinid16/ISDH-Tensorflow)
def get_config():
config = {
"alpha": 0.5,
"gamma": 10,
"lambda": 0.1,
# "optimizer":{"type": optim.SGD, "optim_params": {"lr": 0.05, "weight_decay": 10 ** -5}, "lr_type": "step"},
"optimizer": {"type": optim.RMSprop, "optim_params": {"lr": 1e-5, "weight_decay": 10 ** -5}, "lr_type": "step"},
"info": "[ISDH]",
"resize_size": 256,
"crop_size": 224,
"batch_size": 128,
"net": AlexNet,
# "net":ResNet,
# "dataset": "cifar10",
"dataset": "cifar10-1",
# "dataset": "cifar10-2",
# "dataset": "coco",
# "dataset": "mirflickr",
# "dataset": "voc2012",
# "dataset": "imagenet",
# "dataset": "nuswide_21",
# "dataset": "nuswide_21_m",
# "dataset": "nuswide_81_m",
"epoch": 150,
"test_map": 15,
"save_path": "save/ISDH",
# "device":torch.device("cpu"),
"device": torch.device("cuda:1"),
"bit_list": [48],
}
config = config_dataset(config)
return config
class DPSHLoss(torch.nn.Module):
def __init__(self, config, bit):
super(DPSHLoss, self).__init__()
self.U = torch.zeros(config["num_train"], bit).float().to(config["device"])
self.Y = torch.zeros(config["num_train"], config["n_class"]).float().to(config["device"])
def forward(self, u, y, ind, config):
u = u / (u.abs() + 1)
self.U[ind, :] = u.data
self.Y[ind, :] = y.float()
s = y @ self.Y.t()
norm = y.pow(2).sum(dim=1, keepdim=True).pow(0.5) @ self.Y.pow(2).sum(dim=1, keepdim=True).pow(0.5).t()
s = s / (norm + 0.00001)
M = (s > 0.99).float() + (s < 0.01).float()
inner_product = config["alpha"] * u @ self.U.t()
log_loss = torch.log(1 + torch.exp(-inner_product.abs())) + inner_product.clamp(min=0) - s * inner_product
mse_loss = (s - torch.sigmoid(inner_product)).pow(2)
loss1 = (config["gamma"] * M * log_loss + (1 - M) * mse_loss).mean()
loss2 = config["lambda"] * (u.abs() - 1).abs().mean()
return loss1 + loss2
def train_val(config, bit):
device = config["device"]
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
config["num_train"] = num_train
net = config["net"](bit).to(device)
optimizer = config["optimizer"]["type"](net.parameters(), **(config["optimizer"]["optim_params"]))
criterion = DPSHLoss(config, bit)
Best_mAP = 0
for epoch in range(config["epoch"]):
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
print("%s[%2d/%2d][%s] bit:%d, dataset:%s, training...." % (
config["info"], epoch + 1, config["epoch"], current_time, bit, config["dataset"]), end="")
net.train()
train_loss = 0
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device)
optimizer.zero_grad()
u = net(image)
loss = criterion(u, label.float(), ind, config)
train_loss += loss.item()
loss.backward()
optimizer.step()
train_loss = train_loss / len(train_loader)
print("\b\b\b\b\b\b\b loss:%.3f" % (train_loss))
if (epoch + 1) % config["test_map"] == 0:
Best_mAP = validate(config, Best_mAP, test_loader, dataset_loader, net, bit, epoch, num_dataset)
if __name__ == "__main__":
config = get_config()
print(config)
for bit in config["bit_list"]:
train_val(config, bit)