FNV Mix Algorithm Analysis for TEthashV1
In case of FNV (Fowler-Noll-Vo) Hash Algorithm is used on simple and fast hashing of short messages. You can refer original FNV Hash algorithm wiki here
-
In ETHASH , FNV Hash is used on
-
-
On Data aggregation function, MIX parts.
Current Applied FNV0 Hash Implementation is depricated now. FNV-0_hash (deprecated)
It is simple way of hashing algorithm
-
hash = 0 for each byte_of_data to be hashed hash = hash × FNV_prime hash = hash XOR octet_of_data return hash
When Analysed FNV-0 , there's weak avalanche effect, when hash input changes on 1~2bits. So, It may be deprecated.
We need to research newer FNV Hash or short message hash algorithm.
-
Recent days, Prevent ASIC Miners. There's several proposals for change ETHASH Algorithms.
In April on this year,
@trustfarm-dev also suggested to change Keccack algorithm and MIX algorithm. Issue Suggestion
Other's also suggest to use FNV1 or FNV1A hash algorithm on MIX parts.
EIP-969 ,
EIP-1057 - ProgPoW ,
EIP-1355
There's implementation doesn't looks like FNV1A , Implementation Form is looks like FNV1.
In view of Original Algorithm FNV1A
use hash offset
FNV-1a hash
The FNV-1a hash differs from the FNV-1 hash by only the order in which the multiply and XOR is performed:[8][10]
hash = FNV_offset_basis
for each byte_of_data to be hashed
hash = hash XOR byte_of_data
hash = hash × FNV_prime
return hash
Big Differences are FNV1A vs FNV1 is use of initial FNV_offset_basis.
Offset Makes one more computation, multiplication loop, and more secure hash effects than FNV1.
In TETHashV1, Adapts fully follow the FNV1A implementation.
Followings are reference implementation of FNV1A adapted in TETHashV1.
-- Reference Pseudo implementation
#define __TETHASHV1__
#undef __ETHASH__
#define FNV_PRIME 0x01000193U
#define FNV_OFFSET_BASIS 0x811c9dc5U
#ifdef __ETHASH__
#define fnv(x, y) ((x) * FNV_PRIME ^ (y))
#define fnv_reduce(a,b,c,d) (fnv(fnv(fnv(a, b), c), d))
#else // default __TETHASHV1__
#define fnv1a(x, y) ((((FNV_OFFSET_BASIS^(x))*FNV_PRIME) ^ (y)) * FNV_PRIME)
#define fnv1a_reduce(a,b,c,d) (fnv1a(fnv1a(fnv1a(a, b), c), d))
#endif
There's another implementation of Character Size (1Byte) hash message based FNV1A, It's called us , FNV1c It's more secure compared with above hash implementation.
But, FNV1A is also enough, when fnv_reduce()
.
Finally, We consider realistic implementation and computing speeds, choosed FNV1A.
Here's TAO's implementation of FNV1c , 4times more computation, mulitplication loops.
#define FNV_PRIME 0x01000193U
#define FNV_OFFSET_BASIS 0x811c9dc5U
#define fnv1i(x) ( (( (( (( \
( ((FNV_OFFSET_BASIS)^( ((x)>>24)&0x000000ff )) * FNV_PRIME) \
^ (((x)>>16 )&0x000000ff)) * FNV_PRIME) \
^ (((x)>>8 )&0x000000ff)) * FNV_PRIME) \
^ (((x) )&0x000000ff)) * FNV_PRIME) \
)
#define fnv1c(x, y) ((fnv1i(x) ^ (y)) * FNV_PRIME)
You can compile it with simple in terminal. No additional library needs,
gcc -o fnvtest fnvcltest.c
And You can execute it
fnvtest
F(00,00)::VEC(0, 0, ffffffff, 0):: FNV :00000000, DF=00000000(00) DS(00000000), FNV1 :00000000, DF=00000000(00) DS(00000000), FNV1a:117697cd, DF=117697cd(17) DS(117697cd), FNV1c:1210d00f, DF=127f8dbf(20) DS(11a1725f), F___RC=efe1b9c4, DF:efe1b9c4(19) , F1__RC=deb68dfe, DF:deb68dfe(22) , F1A_RC=99bad28b, DF:99bad28b(17) , F1C_RC=e29fa497, DF:e29fa497(18)
F(00,01)::VEC(0, 1, ffffffff, 0):: FNV :00000001, DF=00000001(01) DS(00000001), FNV1 :01000193, DF=01000193(06) DS(01000193), FNV1a:1076963a, DF=010001f7(09) DS(01000193), FNV1c:1110ce7c, DF=03001e73(11) DS(01000193), F___RC=fefffe6d, DF:111e47a9(14) , F1__RC=d9fd8597, DF:074b0869(12) , F1A_RC=72c287e0, DF:eb78556b(19) , F1C_RC=6b6991ef, DF:89f63578(17)
F(00,02)::VEC(0, 2, ffffffff, 0):: FNV :00000002, DF=00000003(02) DS(00000001), FNV1 :02000326, DF=030002b5(08) DS(01000193), FNV1a:0f7694a7, DF=1f00029d(11) DS(01000193), FNV1c:1410d335, DF=05001d49(09) DS(030004b9), F___RC=d8fd8404, DF:26027a69(13) , F1__RC=9b16d24c, DF:42eb57db(19) , F1A_RC=c17f0ecb, DF:b3bd892b(18) , F1C_RC=a5be8e78, DF:ced71f97(21)
F(00,03)::VEC(0, 3, ffffffff, 0):: FNV :00000003, DF=00000001(01) DS(00000001), FNV1 :030004b9, DF=0100079f(10) DS(01000193), FNV1a:0e769314, DF=010007b3(09) DS(01000193), FNV1c:1310d1a2, DF=07000297(09) DS(01000193), F___RC=b2fb099b, DF:6a068d9f(16) , F1__RC=5c301f01, DF:c726cd4d(17) , F1A_RC=94cf402e, DF:55b04ee5(16) , F1C_RC=aea1a025, DF:0b1f2e5d(17)
F(00,04)::VEC(0, 4, ffffffff, 0):: FNV :00000004, DF=00000007(03) DS(00000001), FNV1 :0400064c, DF=070002f5(10) DS(01000193), FNV1a:0d769181, DF=03000295(07) DS(01000193), FNV1c:0e10c9c3, DF=1d001861(09) DS(050007df), F___RC=8cf88f32, DF:3e0386a9(14) , F1__RC=1d496bb6, DF:417974b7(17) , F1A_RC=89401d59, DF:1d8f5d77(20) , F1C_RC=e4e96c7c, DF:4a48cc59(13)
F(00,05)::VEC(0, 5, ffffffff, 0):: FNV :00000005, DF=00000001(01) DS(00000001), FNV1 :050007df, DF=01000193(06) DS(01000193), FNV1a:0c768fee, DF=01001e6f(11) DS(01000193), FNV1c:0d10c830, DF=030001f3(09) DS(01000193), F___RC=66f614c9, DF:ea0e9bfb(20) , F1__RC=de62b86b, DF:c32bd3dd(19) , F1A_RC=346e222c, DF:bd2e3f75(21) , F1C_RC=502e5f82, DF:b4c733fe(20)
F(00,06)::VEC(0, 6, ffffffff, 0):: FNV :00000006, DF=00000003(02) DS(00000001), FNV1 :06000972, DF=03000ead(10) DS(01000193), FNV1a:0b768e5b, DF=070001b5(09) DS(01000193), FNV1c:1010cce9, DF=1d0004d9(10) DS(030004b9), F___RC=40f39a60, DF:26058ea9(13) , F1__RC=9f7c0520, DF:411ebd4b(16) , F1A_RC=b376a527, DF:8718870b(13) , F1C_RC=1241a9a4, DF:426ff626(17)
F(00,07)::VEC(0, 7, ffffffff, 0):: FNV :00000007, DF=00000001(01) DS(00000001), FNV1 :07000b05, DF=01000277(08) DS(01000193), FNV1a:0a768cc8, DF=01000293(06) DS(01000193), FNV1c:0f10cb56, DF=1f0007bf(15) DS(01000193), F___RC=1af11ff7, DF:5a028597(13) , F1__RC=609551d5, DF:ffe954f5(22) , F1A_RC=14293bea, DF:a75f9ecd(21) , F1C_RC=49d34bba, DF:5b92e21e(16)
F(00,08)::VEC(0, 8, ffffffff, 0):: FNV :00000008, DF=0000000f(04) DS(00000001), FNV1 :08000c98, DF=0f00079d(12) DS(01000193), FNV1a:09768b35, DF=030007fd(12) DS(01000193), FNV1c:1a10dca7, DF=150017f1(12) DS(0b001151), F___RC=f4eea58e, DF:ee1fba79(21) , F1__RC=21ae9e8a, DF:413bcf5f(19) , F1A_RC=eeebb7a5, DF:fac28c4f(17) , F1C_RC=7da04f47, DF:347304fd(16)
F(00,09)::VEC(0, 9, ffffffff, 0):: FNV :00000009, DF=00000001(01) DS(00000001), FNV1 :09000e2b, DF=010002b3(07) DS(01000193), FNV1a:087689a2, DF=01000297(07) DS(01000193), FNV1c:1910db14, DF=030007b3(10) DS(01000193), F___RC=ceec2b25, DF:3a028eab(14) , F1__RC=e2c7eb3f, DF:c36975b5(18) , F1A_RC=54e1aef8, DF:ba0a195d(15) , F1C_RC=d425e1af, DF:a985aee8(16)
F(00,0a)::VEC(0, a, ffffffff, 0):: FNV :0000000a, DF=00000003(02) DS(00000001), FNV1 :0a000fbe, DF=03000195(07) DS(01000193), FNV1a:0776880f, DF=0f0001ad(10) DS(01000193), FNV1c:1c10dfcd, DF=050004d9(08) DS(030004b9), F___RC=a8e9b0bc, DF:66059b99(15) , F1__RC=a3e137f4, DF:4126dccb(15) , F1A_RC=213fcd63, DF:75de639b(20) , F1C_RC=7e1d2751, DF:aa38c6fe(18)
F(00,0b)::VEC(0, b, ffffffff, 0):: FNV :0000000b, DF=00000001(01) DS(00000001), FNV1 :0b001151, DF=01001eef(12) DS(01000193), FNV1a:0676867c, DF=01000e73(09) DS(01000193), FNV1c:1b10de3a, DF=070001f7(11) DS(01000193), F___RC=82e73653, DF:2a0e86ef(16) , F1__RC=64fa84a9, DF:c71bb35d(19) , F1A_RC=5598ce46, DF:74a70325(14) , F1C_RC=6400c630, DF:1a1de161(14)
F(00,0c)::VEC(0, c, ffffffff, 0):: FNV :0000000c, DF=00000007(03) DS(00000001), FNV1 :0c0012e4, DF=070003b5(10) DS(01000193), FNV1a:057684e9, DF=03000295(07) DS(01000193), FNV1c:1610d65b, DF=0d000861(07) DS(050007df), F___RC=5ce4bbea, DF:de038db9(17) , F1__RC=2613d15e, DF:42e955f7(18) , F1A_RC=6a220ff1, DF:3fbac1b7(20) , F1C_RC=6e781da4, DF:0a78db94(15)
F(00,0d)::VEC(0, d, ffffffff, 0):: FNV :0000000d, DF=00000001(01) DS(00000001), FNV1 :0d001477, DF=01000693(07) DS(01000193), FNV1a:04768356, DF=010007bf(11) DS(01000193), FNV1c:1510d4c8, DF=03000293(07) DS(01000193), F___RC=36e24181, DF:6a06fa6b(17) , F1__RC=e72d1e13, DF:c13ecf4d(18) , F1A_RC=168d4944, DF:7caf46b5(19) , F1C_RC=65bbcfa1, DF:0bc3d205(13)
F(00,0e)::VEC(0, e, ffffffff, 0):: FNV :0000000e, DF=00000003(02) DS(00000001), FNV1 :0e00160a, DF=0300027d(09) DS(01000193), FNV1a:037681c3, DF=07000295(08) DS(01000193), FNV1c:1810d981, DF=0d000d49(09) DS(030004b9), F___RC=10dfc718, DF:263d8699(15) , F1__RC=a8466ac8, DF:4f6b74db(20) , F1A_RC=93e667bf, DF:856b2efb(19) , F1C_RC=76f80ee3, DF:1343c142(11)
F(00,0f)::VEC(0, f, ffffffff, 0):: FNV :0000000f, DF=00000001(01) DS(00000001), FNV1 :0f00179d, DF=01000197(07) DS(01000193), FNV1a:02768030, DF=010001f3(08) DS(01000193), FNV1c:1710d7ee, DF=0f000e6f(13) DS(01000193), F___RC=eadd4caf, DF:fa028bb7(17) , F1__RC=695fb77d, DF:c119ddb5(17) , F1A_RC=0f485682, DF:9cae313d(17) , F1C_RC=3667e8dc, DF:409fe63f(18)
F(00,10)::VEC(0, 10, ffffffff, 0):: FNV :00000010, DF=0000001f(05) DS(00000001), FNV1 :10001930, DF=1f000ead(13) DS(01000193), FNV1a:01767e9d, DF=0300fead(14) DS(01000193), FNV1c:0210b6df, DF=15006131(09) DS(1500210f), F___RC=c4dad246, DF:2e079ee9(17) , F1__RC=2a790432, DF:4326b34f(16) , F1A_RC=d10adebd, DF:de42883f(16) , F1C_RC=1ce48e12, DF:2a8366ce(15)
F(00,01)
: is input x,y
VEC(0, 1, ffffffff, 0)
: is fnv_reduce
input vector (a,b,c,d)
FNV :00000001, DF=00000001(01) DS(00000001)
:
FNV(00,01)
result is 00000001 ,DF
: is changed bitcounts, compared with previous outputs, in this case prev[00,00] current[00,01] input is 1bit changed, and output result 1bit changed.DS
: is distances of previous result and current result , ABS(prev_fnvresult,current_fnvresult).
** Basically, DF
is higher is best on hash algorithm.
F___RC=fefffe6d, DF:111e47a9(14)
: fnv_reduce = fnv(fnv(fnv(a,b),c),d)
result is fefffe6d , and Different Bits counts are 14
bits.