Skip to content

Graph Node indexes data from blockchains such as Ethereum and serves it over GraphQL

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT
Notifications You must be signed in to change notification settings

teller-protocol/graph-node

 
 

Graph Node

Build Status Getting Started Docs

The Graph is a protocol for building decentralized applications (dApps) quickly on Ethereum and IPFS using GraphQL.

Graph Node is an open source Rust implementation that event sources the Ethereum blockchain to deterministically update a data store that can be queried via the GraphQL endpoint.

For detailed instructions and more context, check out the Getting Started Guide.

Quick Start

Prerequisites

To build and run this project you need to have the following installed on your system:

For Ethereum network data, you can either run your own Ethereum node or use an Ethereum node provider of your choice.

Minimum Hardware Requirements:

  • To build graph-node with cargo, 8GB RAM are required.

Running a Local Graph Node

This is a quick example to show a working Graph Node. It is a subgraph for Gravatars.

  1. Install IPFS and run ipfs init followed by ipfs daemon.
  2. Install PostgreSQL and run initdb -D .postgres followed by pg_ctl -D .postgres -l logfile start and createdb graph-node.
  3. If using Ubuntu, you may need to install additional packages:
    • sudo apt-get install -y clang libpq-dev libssl-dev pkg-config
  4. In the terminal, clone https://github.com/graphprotocol/example-subgraph, and install dependencies and generate types for contract ABIs:
yarn
yarn codegen
  1. In the terminal, clone https://github.com/graphprotocol/graph-node, and run cargo build.

Once you have all the dependencies set up, you can run the following:

cargo run -p graph-node --release -- \
  --postgres-url postgresql://USERNAME[:PASSWORD]@localhost:5432/graph-node \
  --ethereum-rpc NETWORK_NAME:[CAPABILITIES]:URL \
  --ipfs 127.0.0.1:5001

Try your OS username as USERNAME and PASSWORD. For details on setting the connection string, check the Postgres documentation. graph-node uses a few Postgres extensions. If the Postgres user with which you run graph-node is a superuser, graph-node will enable these extensions when it initializes the database. If the Postgres user is not a superuser, you will need to create the extensions manually since only superusers are allowed to do that. To create them you need to connect as a superuser, which in many installations is the postgres user:

    psql -q -X -U <SUPERUSER> graph-node <<EOF
create extension pg_trgm;
create extension pg_stat_statements;
create extension btree_gist;
create extension postgres_fdw;
grant usage on foreign data wrapper postgres_fdw to <USERNAME>;
EOF

This will also spin up a GraphiQL interface at http://127.0.0.1:8000/.

  1. With this Gravatar example, to get the subgraph working locally run:
yarn create-local

Then you can deploy the subgraph:

yarn deploy-local

This will build and deploy the subgraph to the Graph Node. It should start indexing the subgraph immediately.

Command-Line Interface

USAGE:
    graph-node [FLAGS] [OPTIONS] --ethereum-ipc <NETWORK_NAME:FILE> --ethereum-rpc <NETWORK_NAME:URL> --ethereum-ws <NETWORK_NAME:URL> --ipfs <HOST:PORT> --postgres-url <URL>

FLAGS:
        --debug      Enable debug logging
    -h, --help       Prints help information
    -V, --version    Prints version information

OPTIONS:
        --admin-port <PORT>                           Port for the JSON-RPC admin server [default: 8020]
        --elasticsearch-password <PASSWORD>
            Password to use for Elasticsearch logging [env: ELASTICSEARCH_PASSWORD]

        --elasticsearch-url <URL>
            Elasticsearch service to write subgraph logs to [env: ELASTICSEARCH_URL=]

        --elasticsearch-user <USER>                   User to use for Elasticsearch logging [env: ELASTICSEARCH_USER=]
        --ethereum-ipc <NETWORK_NAME:[CAPABILITIES]:FILE>
            Ethereum network name (e.g. 'mainnet'), optional comma-seperated capabilities (eg full,archive), and an Ethereum IPC pipe, separated by a ':'

        --ethereum-polling-interval <MILLISECONDS>
            How often to poll the Ethereum node for new blocks [env: ETHEREUM_POLLING_INTERVAL=]  [default: 500]

        --ethereum-rpc <NETWORK_NAME:[CAPABILITIES]:URL>
            Ethereum network name (e.g. 'mainnet'), optional comma-seperated capabilities (eg 'full,archive'), and an Ethereum RPC URL, separated by a ':'

        --ethereum-ws <NETWORK_NAME:[CAPABILITIES]:URL>
            Ethereum network name (e.g. 'mainnet'), optional comma-seperated capabilities (eg `full,archive), and an Ethereum WebSocket URL, separated by a ':'

        --node-id <NODE_ID>
            A unique identifier for this node instance. Should have the same value between consecutive node restarts [default: default]

        --http-port <PORT>                            Port for the GraphQL HTTP server [default: 8000]
        --ipfs <HOST:PORT>                            HTTP address of an IPFS node
        --postgres-url <URL>                          Location of the Postgres database used for storing entities
        --subgraph <[NAME:]IPFS_HASH>                 Name and IPFS hash of the subgraph manifest
        --ws-port <PORT>                              Port for the GraphQL WebSocket server [default: 8001]

Advanced Configuration

The command line arguments generally are all that is needed to run a graph-node instance. For advanced uses, various aspects of graph-node can further be configured through environment variables. Very large graph-node instances can also split the work of querying and indexing across multiple databases.

Project Layout

  • node — A local Graph Node.
  • graph — A library providing traits for system components and types for common data.
  • core — A library providing implementations for core components, used by all nodes.
  • chain/ethereum — A library with components for obtaining data from Ethereum.
  • graphql — A GraphQL implementation with API schema generation, introspection, and more.
  • mock — A library providing mock implementations for all system components.
  • runtime/wasm — A library for running WASM data-extraction scripts.
  • server/http — A library providing a GraphQL server over HTTP.
  • store/postgres — A Postgres store with a GraphQL-friendly interface and audit logs.

Roadmap

🔨 = In Progress

🛠 = Feature complete. Additional testing required.

✅ = Feature complete

Feature Status
Ethereum
Indexing smart contract events
Handle chain reorganizations
Mappings
WASM-based mappings
TypeScript-to-WASM toolchain
Autogenerated TypeScript types
GraphQL
Query entities by ID
Query entity collections
Pagination
Filtering
Block-based Filtering
Entity relationships
Subscriptions

Contributing

Please check CONTRIBUTING.md for development flow and conventions we use. Here's a list of good first issues.

License

Copyright © 2018-2019 Graph Protocol, Inc. and contributors.

The Graph is dual-licensed under the MIT license and the Apache License, Version 2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied. See the License for the specific language governing permissions and limitations under the License.

About

Graph Node indexes data from blockchains such as Ethereum and serves it over GraphQL

Resources

License

Apache-2.0, MIT licenses found

Licenses found

Apache-2.0
LICENSE-APACHE
MIT
LICENSE-MIT

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Rust 57.7%
  • HTML 38.3%
  • PLpgSQL 1.6%
  • TypeScript 1.2%
  • CSS 0.5%
  • JavaScript 0.5%
  • Other 0.2%