Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Subject: Add R2Score metric. (#8169) #8353

Merged
merged 2 commits into from
Aug 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions tfjs-layers/src/exports_metrics.ts
Original file line number Diff line number Diff line change
Expand Up @@ -314,3 +314,22 @@ export function MSE(yTrue: Tensor, yPred: Tensor): Tensor {
export function mse(yTrue: Tensor, yPred: Tensor): Tensor {
return losses.meanSquaredError(yTrue, yPred);
}

/**
* Computes R2 score.
*
* ```js
* const yTrue = tf.tensor2d([[0, 1], [3, 4]]);
* const yPred = tf.tensor2d([[0, 1], [-3, -4]]);
* const r2Score = tf.metrics.r2Score(yTrue, yPred);
* r2Score.print();
* ```
* @param yTrue Truth Tensor.
* @param yPred Prediction Tensor.
* @return R2 score Tensor.
*
* @doc {heading: 'Metrics', namespace: 'metrics'}
*/
export function r2Score(yTrue: Tensor, yPred: Tensor): Tensor {
return metrics.r2Score(yTrue, yPred);
}
12 changes: 9 additions & 3 deletions tfjs-layers/src/metrics.ts
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,7 @@ import {Tensor, tidy} from '@tensorflow/tfjs-core';

import * as K from './backend/tfjs_backend';
import {NotImplementedError, ValueError} from './errors';
import {categoricalCrossentropy as categoricalCrossentropyLoss, cosineProximity, meanAbsoluteError, meanAbsolutePercentageError, meanSquaredError, sparseCategoricalCrossentropy as sparseCategoricalCrossentropyLoss} from './losses';
import {binaryCrossentropy as lossBinaryCrossentropy} from './losses';
import {lossesMap} from './losses';
import {binaryCrossentropy as lossBinaryCrossentropy, categoricalCrossentropy as categoricalCrossentropyLoss, cosineProximity, lossesMap, meanAbsoluteError, meanAbsolutePercentageError, meanSquaredError, sparseCategoricalCrossentropy as sparseCategoricalCrossentropyLoss} from './losses';
import {LossOrMetricFn} from './types';
import * as util from './utils/generic_utils';

Expand Down Expand Up @@ -112,6 +110,14 @@ export function sparseTopKCategoricalAccuracy(
throw new NotImplementedError();
}

export function r2Score(yTrue: Tensor, yPred: Tensor): Tensor {
return tidy(() => {
const sumSquaresResiduals = yTrue.sub(yPred).square().sum();
const sumSquares = yTrue.sub(yTrue.mean()).square().sum();
return tfc.scalar(1).sub(sumSquaresResiduals.div(sumSquares));
});
}

// Aliases.
export const mse = meanSquaredError;
export const MSE = meanSquaredError;
Expand Down
23 changes: 22 additions & 1 deletion tfjs-layers/src/metrics_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ import {scalar, Tensor, tensor, tensor1d, tensor2d} from '@tensorflow/tfjs-core'

import {setEpsilon} from './backend/common';
import * as tfl from './index';
import {binaryAccuracy, categoricalAccuracy, get, getLossOrMetricName} from './metrics';
import {binaryAccuracy, categoricalAccuracy, get, getLossOrMetricName, r2Score} from './metrics';
import {LossOrMetricFn} from './types';
import {describeMathCPUAndGPU, describeMathCPUAndWebGL2, expectTensorsClose} from './utils/test_utils';

Expand Down Expand Up @@ -283,6 +283,27 @@ describeMathCPUAndGPU('recall metric', () => {
});
});

describeMathCPUAndGPU('r2Score', () => {
it('1D', () => {
const yTrue = tensor1d([3, -0.5, 2, 7, 4.2, 8.5, 1.3, 2.8, 6.7, 9.0]);
const yPred = tensor1d([2.5, 0.0, 2.1, 7.8, 4.0, 8.2, 1.4, 2.9, 6.5, 9.1]);
const score = r2Score(yTrue, yPred);
expectTensorsClose(score, scalar(0.985));
});
it('2D', () => {
const yTrue = tensor2d([
[3, 2.5], [-0.5, 3.2], [2, 1.9], [7, 5.1], [4.2, 3.8], [8.5, 7.4],
[1.3, 0.6], [2.8, 2.1], [6.7, 5.3], [9.0, 8.7]
]);
const yPred = tensor2d([
[2.7, 2.3], [0.0, 3.1], [2.1, 1.8], [6.8, 5.0], [4.1, 3.7], [8.4, 7.2],
[1.4, 0.7], [2.9, 2.2], [6.6, 5.2], [9.2, 8.9]
]);
const score = r2Score(yTrue, yPred);
expectTensorsClose(score, scalar(0.995));
});
});

describe('metrics.get', () => {
it('valid name, not alias', () => {
expect(get('binaryAccuracy') === get('categoricalAccuracy')).toEqual(false);
Expand Down