Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

New bds #8

Closed
wants to merge 37 commits into from
Closed

New bds #8

wants to merge 37 commits into from

Conversation

niruiyu
Copy link
Member

@niruiyu niruiyu commented Apr 27, 2015

No description provided.

niruiyu and others added 30 commits April 27, 2015 10:47
to MdePkg: PcdHardwareErrorRecordLevel, PcdPlatformBootTimeout
to MdeModulePkg: PcdSetupConOutColumn, PcdSetupConOutRow, PcdSetupVideoHorizontalResolution, PcdSetupVideoVerticalResolution

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Liming Gao <[email protected]>
…Pkg and MdeModulePkg.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Jeff Fan <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Shumin Qiu <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Liming Gao <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Laszlo Ersek <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: [email protected]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-By: Olivier Martin <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Maurice Ma <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
UefiBootManagerLib provides:
 load option library functions;
 hot key library functions;
 boot library functions;
 connect and disconnect library functions;
 driver health library functions.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
BdsDxe driver links to UefiBootManagerLib and PlatformBootManager to
provide a pure UEFI boot manager conforming to the UEFI spec.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
BootManagerMenuApp only provides a very simple UI showing all the boot options
recorded by "BootOrder" and user can select any of them to boot.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
LegacyBootManagerLib is a NULL class library to work with UefiBootManagerLib
providing legacy boot support.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
DriverHealthManagerDxe provides a driver health management VFR form
which will be sent by UefiBootManagerLib when booting a boot option.
It also provides another driver health management VFR form which will
be included by certain boot manager menu through the VFR class GUID.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
Including:
  PcdHardwareErrorRecordLevel, PcdPlatformBootTimeout
  PcdSetupConOutColumn, PcdSetupConOutRow, PcdSetupVideoHorizontalResolution, PcdSetupVideoVerticalResolution

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: Eric Dong <[email protected]>
to MdePkg: PcdHardwareErrorRecordLevel, PcdPlatformBootTimeout
to MdeModulePkg: PcdSetupConOutColumn, PcdSetupConOutRow, PcdSetupVideoHorizontalResolution, PcdSetupVideoVerticalResolution

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Liming Gao <[email protected]>
…Pkg and MdeModulePkg.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Jeff Fan <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Shumin Qiu <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Liming Gao <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Eric Dong <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Laszlo Ersek <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
CC: [email protected]
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-By: Olivier Martin <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Maurice Ma <[email protected]>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
UefiBootManagerLib provides:
 load option library functions;
 hot key library functions;
 boot library functions;
 connect and disconnect library functions;
 driver health library functions.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Eric Dong <[email protected]>
BdsDxe driver links to UefiBootManagerLib and PlatformBootManager to
provide a pure UEFI boot manager conforming to the UEFI spec.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Eric Dong <[email protected]>
BootManagerMenuApp only provides a very simple UI showing all the boot options
recorded by "BootOrder" and user can select any of them to boot.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ruiyu Ni <[email protected]>
Reviewed-by: Eric Dong <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 6, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 6, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 8, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 9, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 9, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
ardbiesheuvel pushed a commit to ardbiesheuvel/edk2 that referenced this pull request May 13, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by:  <Doug>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 17, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by:  <Doug>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 20, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 20, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 20, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 20, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 20, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 24, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Flickdm added a commit to Flickdm/edk2 that referenced this pull request May 24, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Reviewed-by: Saloni Kasbekar <[email protected]>
lgao4 pushed a commit to Flickdm/edk2 that referenced this pull request May 24, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug tianocore#8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Reviewed-by: Saloni Kasbekar <[email protected]>
mergify bot pushed a commit that referenced this pull request May 24, 2024
REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4541
REF: https://www.rfc-editor.org/rfc/rfc1948.txt
REF: https://www.rfc-editor.org/rfc/rfc6528.txt
REF: https://www.rfc-editor.org/rfc/rfc9293.txt

Bug Overview:
PixieFail Bug #8
CVE-2023-45236
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:L/I:N/A:N
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor

Updates TCP ISN generation to use a cryptographic hash of the
connection's identifying parameters and a secret key.
This prevents an attacker from guessing the ISN used for some other
connection.

This is follows the guidance in RFC 1948, RFC 6528, and RFC 9293.

RFC: 9293 Section 3.4.1.  Initial Sequence Number Selection

   A TCP implementation MUST use the above type of "clock" for clock-
   driven selection of initial sequence numbers (MUST-8), and SHOULD
   generate its initial sequence numbers with the expression:

   ISN = M + F(localip, localport, remoteip, remoteport, secretkey)

   where M is the 4 microsecond timer, and F() is a pseudorandom
   function (PRF) of the connection's identifying parameters ("localip,
   localport, remoteip, remoteport") and a secret key ("secretkey")
   (SHLD-1).  F() MUST NOT be computable from the outside (MUST-9), or
   an attacker could still guess at sequence numbers from the ISN used
   for some other connection.  The PRF could be implemented as a
   cryptographic hash of the concatenation of the TCP connection
   parameters and some secret data.  For discussion of the selection of
   a specific hash algorithm and management of the secret key data,
   please see Section 3 of [42].

   For each connection there is a send sequence number and a receive
   sequence number.  The initial send sequence number (ISS) is chosen by
   the data sending TCP peer, and the initial receive sequence number
   (IRS) is learned during the connection-establishing procedure.

   For a connection to be established or initialized, the two TCP peers
   must synchronize on each other's initial sequence numbers.  This is
   done in an exchange of connection-establishing segments carrying a
   control bit called "SYN" (for synchronize) and the initial sequence
   numbers.  As a shorthand, segments carrying the SYN bit are also
   called "SYNs".  Hence, the solution requires a suitable mechanism for
   picking an initial sequence number and a slightly involved handshake
   to exchange the ISNs.

Cc: Saloni Kasbekar <[email protected]>
Cc: Zachary Clark-williams <[email protected]>

Signed-off-by: Doug Flick [MSFT] <[email protected]>
Reviewed-by: Saloni Kasbekar <[email protected]>
jiaxinwu added a commit to jiaxinwu/edk2 that referenced this pull request Oct 12, 2024
This patch does not impact functionality. It aims to clarify the
synchronization flow between the BSP and APs to enhance code
readability and understanding:

Steps tianocore#6 and tianocore#11 are the basic synchronization requirements for all
cases.

Steps tianocore#1 and tianocore#2 are additional requirements if the
MmCpuSyncModeTradition mode is selected.

Steps tianocore#1, tianocore#2, tianocore#3, tianocore#4, tianocore#5, tianocore#7, tianocore#8, tianocore#9, and tianocore#10 are additional
requirements if the system needs to configure the MTRR.

Steps tianocore#9 and tianocore#10 are additional requirements if the system needs to
support the mSmmDebugAgentSupport.

Signed-off-by: Jiaxin Wu <[email protected]>
jiaxinwu added a commit to jiaxinwu/edk2 that referenced this pull request Oct 12, 2024
This patch does not impact functionality. It aims to clarify the
synchronization flow between the BSP and APs to enhance code
readability and understanding:

Steps tianocore#6 and tianocore#11 are the basic synchronization requirements for all
cases.

Steps tianocore#1 and tianocore#2 are additional requirements if the
MmCpuSyncModeTradition mode is selected.

Steps tianocore#1, tianocore#2, tianocore#3, tianocore#4, tianocore#5, tianocore#7, tianocore#8, tianocore#9, and tianocore#10 are additional
requirements if the system needs to configure the MTRR.

Steps tianocore#9 and tianocore#10 are additional requirements if the system needs to
support the mSmmDebugAgentSupport.

Signed-off-by: Jiaxin Wu <[email protected]>
jiaxinwu added a commit to jiaxinwu/edk2 that referenced this pull request Oct 12, 2024
This patch does not impact functionality. It aims to clarify the
synchronization flow between the BSP and APs to enhance code
readability and understanding:

Steps tianocore#6 and tianocore#11 are the basic synchronization requirements for all
cases.

Steps tianocore#1 is additional requirements if the MmCpuSyncModeTradition
mode is selected.

Steps tianocore#1, tianocore#2, tianocore#3, tianocore#4, tianocore#5, tianocore#7, tianocore#8, tianocore#9, and tianocore#10 are additional
requirements if the system needs to configure the MTRR.

Steps tianocore#9 and tianocore#10 are additional requirements if the system needs to
support the mSmmDebugAgentSupport.

Signed-off-by: Jiaxin Wu <[email protected]>
jiaxinwu added a commit to jiaxinwu/edk2 that referenced this pull request Oct 12, 2024
This patch does not impact functionality. It aims to clarify the
synchronization flow between the BSP and APs to enhance code
readability and understanding:

Steps tianocore#6 and tianocore#11 are the basic synchronization requirements for all
cases.

Steps tianocore#1 is additional requirements if the MmCpuSyncModeTradition
mode is selected.

Steps tianocore#1, tianocore#2, tianocore#3, tianocore#4, tianocore#5, tianocore#7, tianocore#8, tianocore#9, and tianocore#10 are additional
requirements if the system needs to configure the MTRR.

Steps tianocore#9 and tianocore#10 are additional requirements if the system needs to
support the mSmmDebugAgentSupport.

Signed-off-by: Jiaxin Wu <[email protected]>
mergify bot pushed a commit that referenced this pull request Oct 12, 2024
This patch does not impact functionality. It aims to clarify the
synchronization flow between the BSP and APs to enhance code
readability and understanding:

Steps #6 and #11 are the basic synchronization requirements for all
cases.

Steps #1 is additional requirements if the MmCpuSyncModeTradition
mode is selected.

Steps #1, #2, #3, #4, #5, #7, #8, #9, and #10 are additional
requirements if the system needs to configure the MTRR.

Steps #9 and #10 are additional requirements if the system needs to
support the mSmmDebugAgentSupport.

Signed-off-by: Jiaxin Wu <[email protected]>
ishih1 pushed a commit to ishih1/edk2 that referenced this pull request Nov 11, 2024
This patch does not impact functionality. It aims to clarify the
synchronization flow between the BSP and APs to enhance code
readability and understanding:

Steps tianocore#6 and tianocore#11 are the basic synchronization requirements for all
cases.

Steps tianocore#1 is additional requirements if the MmCpuSyncModeTradition
mode is selected.

Steps tianocore#1, tianocore#2, tianocore#3, tianocore#4, tianocore#5, tianocore#7, tianocore#8, tianocore#9, and tianocore#10 are additional
requirements if the system needs to configure the MTRR.

Steps tianocore#9 and tianocore#10 are additional requirements if the system needs to
support the mSmmDebugAgentSupport.

Signed-off-by: Jiaxin Wu <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants