Skip to content
This repository has been archived by the owner on May 22, 2023. It is now read-only.

[OP] Unary tensor operator R.exp #363

Merged
merged 1 commit into from
Jan 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions python/tvm/relax/op/unary.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,23 @@ def cos(x: Expr) -> Expr:
return _ffi_api.cos(x) # type: ignore


def exp(x: Expr) -> Expr:
"""Compute element-wise exp of data.
Parameters
----------
x : relax.Expr
The input data
Returns
-------
result : relax.Expr
The computed result.
Note
----
The input tensor is required to have float dtype
"""
return _ffi_api.exp(x) # type: ignore


def log(x: Expr) -> Expr:
"""Compute element-wise natural logarithm of the input data.

Expand Down
2 changes: 2 additions & 0 deletions python/tvm/script/ir_builder/relax/ir.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
divide,
equal,
ewise_fma,
exp,
expand_dims,
flatten,
floor_divide,
Expand Down Expand Up @@ -408,6 +409,7 @@ def tuple(*fields: List[Expr]) -> Expr:
"emit_match_cast",
"equal",
"ewise_fma",
"exp",
"expand_dims",
"flatten",
"floor_divide",
Expand Down
1 change: 1 addition & 0 deletions src/relax/op/tensor/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ namespace tvm {
namespace relax {

RELAX_REGISTER_UNARY_OP_INTERFACE(cos, /*require_float_dtype=*/true);
RELAX_REGISTER_UNARY_OP_INTERFACE(exp, /*require_float_dtype=*/true);
RELAX_REGISTER_UNARY_OP_INTERFACE(log, /*require_float_dtype=*/true);
RELAX_REGISTER_UNARY_OP_INTERFACE(negative, /*require_float_dtype=*/false);
RELAX_REGISTER_UNARY_OP_INTERFACE(sigmoid, /*require_float_dtype=*/true);
Expand Down
3 changes: 3 additions & 0 deletions src/relax/op/tensor/unary.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@ namespace relax {
*/
Expr cos(Expr x);

/*! \brief Compute element-wise exp of data. */
Expr exp(Expr x);

/*! \brief Compute element-wise natural logarithm of data. */
Expr log(Expr x);

Expand Down
3 changes: 2 additions & 1 deletion tests/python/relax/test_op_unary.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ def test_op_correctness():
assert relax.op.tanh(x).op == Op.get("relax.tanh")
assert relax.op.sqrt(x).op == Op.get("relax.sqrt")
assert relax.op.log(x).op == Op.get("relax.log")
assert relax.op.exp(x).op == Op.get("relax.exp")
assert relax.op.sigmoid(x).op == Op.get("relax.sigmoid")
assert relax.op.unique(x).op == Op.get("relax.unique")

Expand Down Expand Up @@ -74,7 +75,7 @@ def test_unary_arith_infer_struct_info_shape_var():
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))

_check_inference(bb, relax.op.log(x0), relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.tanh(x1), relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.exp(x1), relax.TensorStructInfo(s1, "float32"))
psrivas2 marked this conversation as resolved.
Show resolved Hide resolved


def test_unary_arith_infer_struct_info_more_input_dtype():
Expand Down
117 changes: 38 additions & 79 deletions tests/python/relax/test_tvmscript_parser_op_arith_cmp.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
# specific language governing permissions and limitations
# under the License.

from typing import Optional, Union
from typing import Optional, Union, Callable

import tvm
import tvm.testing
Expand All @@ -34,124 +34,83 @@ def _check(
tvm.ir.assert_structural_equal(parsed, expect)


def test_relax_add():
def _test_unary(op_func: Callable):
@R.function
def foo(
x: R.Tensor((2, 3), "float32"), y: R.Tensor((2, 1), "float32")
) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.add(x, y)
def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = op_func(x)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 1), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.add(x, y))
with bb.function("foo", [x]):
gv = bb.emit(op_func(x))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])


def test_relax_subtract():
def _test_binary_arith(op_func: Callable):
@R.function
def foo(
x: R.Tensor((2, 3), "float32"), y: R.Tensor((2, 1), "float32")
) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.subtract(x, y)
gv: R.Tensor((2, 3), "float32") = op_func(x, y)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 1), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.subtract(x, y))
gv = bb.emit(op_func(x, y))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])


def test_relax_floor_divide():
@R.function
def foo(
x: R.Tensor((2, 3), "float32"), y: R.Tensor((2, 1), "float32")
) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.floor_divide(x, y)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 1), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.floor_divide(x, y))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])


def test_relax_sin():
@R.function
def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.sin(x)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.sin(x))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])


def test_relax_sigmoid():
@R.function
def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.sigmoid(x)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.sigmoid(x))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])


def test_relax_equal():
def _test_binary_cmp(op_func: Callable):
@R.function
def foo(
x: R.Tensor((2, 3), "float32"), y: R.Tensor((2, 1), "float32")
) -> R.Tensor((2, 3), "bool"):
gv: R.Tensor((2, 3), "bool") = R.equal(x, y)
gv: R.Tensor((2, 3), "bool") = op_func(x, y)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 1), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.equal(x, y))
gv = bb.emit(op_func(x, y))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])


def test_relax_less():
@R.function
def foo(
x: R.Tensor((2, 3), "float32"), y: R.Tensor((2, 1), "float32")
) -> R.Tensor((2, 3), "bool"):
gv: R.Tensor((2, 3), "bool") = R.less(x, y)
return gv

x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 1), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.less(x, y))
bb.emit_func_output(gv)

_check(foo, bb.get()["foo"])
def test_unary():
_test_unary(relax.op.cos)
_test_unary(relax.op.exp)
_test_unary(relax.op.log)
_test_unary(relax.op.negative)
_test_unary(relax.op.sigmoid)
_test_unary(relax.op.sin)
_test_unary(relax.op.sqrt)
_test_unary(relax.op.tanh)


def test_binary_arith():
_test_binary_arith(relax.op.add)
_test_binary_arith(relax.op.divide)
_test_binary_arith(relax.op.floor_divide)
_test_binary_arith(relax.op.multiply)
_test_binary_arith(relax.op.subtract)


def test_binary_cmp():
_test_binary_cmp(relax.op.equal)
_test_binary_cmp(relax.op.greater)
_test_binary_cmp(relax.op.greater_equal)
_test_binary_cmp(relax.op.less)
_test_binary_cmp(relax.op.less_equal)
_test_binary_cmp(relax.op.not_equal)


def test_relax_ewise_fma():
Expand Down