Skip to content

Commit

Permalink
[Meta Schedule][M3a] Instruction and Trace (#8615)
Browse files Browse the repository at this point in the history
  • Loading branch information
junrushao authored Aug 2, 2021
1 parent 9f29e2a commit 7653972
Show file tree
Hide file tree
Showing 35 changed files with 2,836 additions and 245 deletions.
288 changes: 288 additions & 0 deletions include/tvm/tir/schedule/instruction.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,288 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef TVM_TIR_SCHEDULE_INSTRUCTION_H_
#define TVM_TIR_SCHEDULE_INSTRUCTION_H_

#include <tvm/node/reflection.h>

#include <utility>

namespace tvm {

// Forward declaration
template <typename, typename>
class AttrRegistry;

namespace tir {

// Forward declaration
class Schedule;

/*!
* \brief Type of the functor that applies the instruction to a TensorIR schedule
* \param sch The schedule to be applied on
* \param inputs The input random variables
* \param attrs Instruction attributes
* \param decision Decisions made on the instruction
* \return The functor returns an array of output random variables
*/
using FInstructionApply = runtime::TypedPackedFunc<Array<ObjectRef>(
Schedule sch, const Array<ObjectRef>& inputs, const Array<ObjectRef>& attrs,
const Optional<ObjectRef>& decision)>;

/*!
* \brief Type of the functor that converts the instruction to a statement in python syntax
* \param inputs Names of the input random variables
* \param attrs Instruction attributes
* \param decisions Decisions made on the instruction
* \param outputs Names of the output random variables
* \return A string representing the python api call
*/
using FInstructionAsPython = runtime::TypedPackedFunc<String(
const Array<ObjectRef>& inputs, const Array<ObjectRef>& attrs,
const Optional<ObjectRef>& decision, const Array<String>& outputs)>;

/*!
* \brief Type of the functor that serialize its attributes to JSON
* \param attrs The attributes to be serialized
* \return An array, serialized attributes
* \note This functor is nullable
*/
using FInstructionAttrsAsJSON = runtime::TypedPackedFunc<ObjectRef(Array<ObjectRef> attrs)>;

/*!
* \brief Type of the functor that deserialize its attributes from JSON
* \param json_attrs The attributes to be serialized
* \return An array, deserialized attributes
* \note This functor is nullable
*/
using FInstructionAttrsFromJSON = runtime::TypedPackedFunc<Array<ObjectRef>(ObjectRef json_attrs)>;

/*!
* \brief Kind of an instruction, e.g. Split, Reorder, etc.
* Besides the name, every kind of instruction has its own properties, including:
* 1) A boolean indicating if the instruction is pure, i.e. change nothing in the schedule state
* 2) A functor that applies the instruction to a TensorIR schedule
* 3) A functor that converts the instruction to a statement in python syntax
* 4) A functor that serialize its attributes to JSON
* 5) A functor that deserialize its attributes from JSON
*
* Unlike `tvm::OpNode`, `InstructionKindNode` doesn't support unstructured properties,
* mainly because there is no such usecase yet to add any other property.
*/
class InstructionKindNode : public runtime::Object {
public:
/*! \brief The name of a kind of instructions */
String name;
/*!
* \brief Indicates if the instruction is pure, i.e. removing it alone doesn't mutate the schedule
* state. For example, the instruction `GetBlock` is pure because it changes
* nothing, while `ComputeInline` is not because removing it leads to a different resulting
* schedule.
*/
bool is_pure{false};
/*! \brief A functor that applies the instruction to a TensorIR schedule */
FInstructionApply f_apply_to_schedule{nullptr};
/*! \brief A functor that converts the instruction to a statement in python syntax */
FInstructionAsPython f_as_python{nullptr};
/*!
* \brief A functor that serialize its attributes to JSON
* \note If the functor is null, it means no conversion is needed
*/
FInstructionAttrsAsJSON f_attrs_as_json{nullptr};
/*!
* \brief A functor that deserialize its attributes from JSON
* \note If the functor is null, it means no conversion is needed
*/
FInstructionAttrsFromJSON f_attrs_from_json{nullptr};

void VisitAttrs(tvm::AttrVisitor* v) {
v->Visit("name", &name);
v->Visit("_is_pure", &is_pure);
// not visited: f_apply_to_schedule
// not visited: f_as_python
// not visited: f_attrs_as_json
// not visited: f_attrs_from_json
}

static constexpr const char* _type_key = "tir.InstructionKind";
TVM_DECLARE_FINAL_OBJECT_INFO(InstructionKindNode, runtime::Object);
};

/*!
* \brief Managed reference to InstructionKindNode
* \sa InstructionKindNode
*/
class InstructionKind : public runtime::ObjectRef {
public:
/*!
* \brief Retrieve an InstructionKind using its name
* \param name The registered name of the InstructionKind
* \return The InstructionKind retrieved
*/
static InstructionKind Get(const String& name);
TVM_DEFINE_OBJECT_REF_METHODS(InstructionKind, runtime::ObjectRef, InstructionKindNode);
};

/*! \brief Schedule instructions each corresponds to a schedule primitive */
class InstructionNode : public runtime::Object {
public:
/*! \brief The kind of the instruction */
InstructionKind kind;
/*!
* \brief The input random variables of the instruction, and the type of each element can be one
* of the following:
* - BlockRV
* - LoopRV
* - ExprRV
* - FloatImm
* - IntImm
* - String
* - null pointer
*/
Array<ObjectRef> inputs;
/*!
* \brief The attributes of the instruction. Similar to attributes of an operator,
* attributes of an instruction are arbitrary constant metadata required by the instructions.
* For example, the name of the block to be retrieved in `GetBlock`.
*/
Array<ObjectRef> attrs;
/*! \brief The output random variables of the instruction, and the type of each element can be one
* of the following:
* - BlockRV
* - LoopRV
* - ExprRV, atomic variables only, won't be constants or composite PrimExpr
*/
Array<ObjectRef> outputs;

void VisitAttrs(tvm::AttrVisitor* v) {
v->Visit("kind", &kind);
v->Visit("inputs", &inputs);
v->Visit("attrs", &attrs);
v->Visit("outputs", &outputs);
}

static constexpr const char* _type_key = "tir.Instruction";
TVM_DECLARE_FINAL_OBJECT_INFO(InstructionNode, runtime::Object);
};

/*!
* \brief Managed reference to InstructionNode
* \sa InstructionNode
*/
class Instruction : public runtime::ObjectRef {
public:
/*!
* \brief Constructor
* \param kind The kind of the instruction
* \param inputs The input random variables of the instruction
* \param attrs The attributes of the instruction
* \param outputs The output random variables of the instruction
*/
explicit Instruction(InstructionKind kind, Array<ObjectRef> inputs, Array<ObjectRef> attrs,
Array<ObjectRef> outputs);

TVM_DEFINE_OBJECT_REF_METHODS(Instruction, runtime::ObjectRef, InstructionNode);
};

/*!
* \brief A helper macro to register InstructionKind, only used in `TVM_REGISTER_INST_KIND`
* \note This macro is not user-facing.
* \sa TVM_REGISTER_INST_KIND
*/
#define TVM_INST_KIND_REGISTER_VAR_DEF \
static DMLC_ATTRIBUTE_UNUSED ::tvm::tir::InstructionKindRegEntry& __make_##InstructionKind

/*!
* \brief Register an InstructionKind
* \param InstructionKindName The name of the InstructionKind
*
* Example:
*
* \code
*
* TVM_REGISTER_INST_KIND("ComputeInline")
* .set_is_pure(false)
* .set_apply_to_schedule(ApplyToSchedule)
* .set_attrs_as_json(AttrsAsJSON)
* .set_attrs_from_json(AttrsFromJSON)
* .set_as_python(AsPython);
*
* \endcode
*/
#define TVM_REGISTER_INST_KIND(InstructionKindName) \
TVM_STR_CONCAT(TVM_INST_KIND_REGISTER_VAR_DEF, __COUNTER__) = \
::tvm::tir::InstructionKindRegEntry::RegisterOrGet(InstructionKindName).set_name()

/*! \brief An entry in the registry of InstructionKind */
class InstructionKindRegEntry {
public:
static InstructionKindRegEntry& RegisterOrGet(const String& name);

InstructionKindRegEntry& set_name() {
get_mutable()->name = this->name;
return *this;
}

InstructionKindRegEntry& set_is_pure(bool is_pure) {
get_mutable()->is_pure = is_pure;
return *this;
}

InstructionKindRegEntry& set_apply_to_schedule(FInstructionApply f_apply_to_schedule) {
get_mutable()->f_apply_to_schedule = std::move(f_apply_to_schedule);
return *this;
}

InstructionKindRegEntry& set_as_python(FInstructionAsPython f_as_python) {
get_mutable()->f_as_python = std::move(f_as_python);
return *this;
}

InstructionKindRegEntry& set_attrs_as_json(FInstructionAttrsAsJSON f_attrs_as_json) {
get_mutable()->f_attrs_as_json = std::move(f_attrs_as_json);
return *this;
}

InstructionKindRegEntry& set_attrs_from_json(FInstructionAttrsFromJSON f_attrs_from_json) {
get_mutable()->f_attrs_from_json = std::move(f_attrs_from_json);
return *this;
}

private:
/*! \brief Private constructor, used only by AttrRegistry */
explicit InstructionKindRegEntry(uint32_t reg_index);
/*! \brief Get the mutable reference to the internal InstructionKind */
InstructionKindNode* get_mutable() const {
return const_cast<InstructionKindNode*>(inst_kind_.get());
}

/*! \brief The name of the registry entry */
String name;
/*! \brief The instruction kind */
InstructionKind inst_kind_;
template <typename, typename>
friend class ::tvm::AttrRegistry;
friend class InstructionKind;
};

} // namespace tir
} // namespace tvm

#endif // TVM_TIR_SCHEDULE_INSTRUCTION_H_
19 changes: 12 additions & 7 deletions include/tvm/tir/schedule/schedule.h
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,8 @@ class ScheduleNode : public runtime::Object {
virtual void RemoveRV(const ExprRV& expr_rv) = 0;

public:
/******** Block/Loop relation ********/
/******** Schedule: Sampling ********/
/******** Schedule: Get blocks & loops ********/
/*!
* \brief Retrieve a block in a specific function with its name
* \param name The name of the block to be retrieved
Expand All @@ -195,7 +196,7 @@ class ScheduleNode : public runtime::Object {
* \return A list of loops above the given block in its scope, from outer to inner
*/
virtual Array<LoopRV> GetLoops(const BlockRV& block_rv) = 0;
/******** Schedule: loops manipulation ********/
/******** Schedule: Transform loops ********/
/*!
* \brief Fuse a list of consecutive loops into one. It requires:
* 1) The loops can't have annotations or thread bindings.
Expand All @@ -215,7 +216,9 @@ class ScheduleNode : public runtime::Object {
* \return The new loops after split
*/
virtual Array<LoopRV> Split(const LoopRV& loop_rv, const Array<Optional<ExprRV>>& factors) = 0;
/******** Schedule: compute location ********/
/******** Schedule: Manipulate ForKind ********/
/******** Schedule: Insert cache stages ********/
/******** Schedule: Compute location ********/
/*!
* \brief Inline a block into its consumer(s). It requires:
* 1) The block is a complete non-root block, which only produces one buffer
Expand All @@ -239,9 +242,7 @@ class ScheduleNode : public runtime::Object {
* \param block The block to be inlined to its producer
*/
virtual void ReverseComputeInline(const BlockRV& block) = 0;
/******** Schedule: loop binding/annotation ********/
/******** Schedule: cache read/write ********/
/******** Schedule: reduction ********/
/******** Schedule: Reduction ********/
/*!
* \brief Factorize an associative reduction block by the specified loop.
* \details An associative reduction cannot be parallelized directly,
Expand All @@ -260,7 +261,11 @@ class ScheduleNode : public runtime::Object {
* \return The rfactor block
*/
virtual BlockRV RFactor(const LoopRV& loop_rv, int factor_axis) = 0;
/******** Schedule: blockize & tensorize ********/
/******** Schedule: Blockize & Tensorize ********/
/******** Schedule: Annotation ********/
/******** Schedule: Misc ********/
/*! \brief A no-op that marks the start of postprocessing phase of scheduling */
virtual void EnterPostproc() = 0;
};

/*!
Expand Down
8 changes: 0 additions & 8 deletions include/tvm/tir/schedule/state.h
Original file line number Diff line number Diff line change
Expand Up @@ -190,14 +190,6 @@ class ScheduleState : public ObjectRef {
* and each time after calling the Replace method.
*/
TVM_DLL explicit ScheduleState(IRModule mod, int debug_mode = 0);
/*!
* \brief Construct a schedule state from a PrimFunc
* \param func The PrimFunc to be scheduled. A new IRModule will be created with
* this specific PrimFunc as "main" function in the module to be scheduled
* \param debug_mode Do extra correctness checking after the class creation
* and each time after calling the Replace method.
*/
TVM_DLL explicit ScheduleState(PrimFunc func, int debug_mode = 0);

/*! \return The mutable pointer to the ScheduleStateNode */
ScheduleStateNode* get() const { return static_cast<ScheduleStateNode*>(data_.get()); }
Expand Down
Loading

0 comments on commit 7653972

Please sign in to comment.