I hvae crated CapsuleConv
for PrimaryCapsule, CapsuleLinear
for DigitCapsule
minist_toy_example.py: minist example from pytorch github code repo
virtualenv -p python3 --no-site-packages .capsule_env
source .capsule_env/bin/activate
pip3 install http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp35-cp35m-manylinux1_x86_64.whl
pip3 install torchvision
CUDA_VISIBLE_DEVICES=2 python main.py
- Test for cifar10
- Re-Implement EM-Routing
-
Kaggle (this version as self-contained notebook):
- MNIST Dataset running on the standard MNIST and predicting for test data
- MNIST Fashion running on the more challenging Fashion images.
-
TensorFlow:
- naturomics/CapsNet-Tensorflow
Very good implementation. I referred to this repository in my code. - InnerPeace-Wu/CapsNet-tensorflow
I referred to the use of tf.scan when optimizing my CapsuleLayer. - LaoDar/tf_CapsNet_simple
- naturomics/CapsNet-Tensorflow
-
PyTorch:
-
MXNet:
-
Lasagne (Theano):
-
Chainer: