Skip to content

travisergodic/vit_tuner

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VIT Tuner

Powerful and efficient VIT tuning tool: Integrating Feature Distillation, Masked Autoencoder, and FT-CLIP techniques.

Installation

  1. Use python version 3.10.0

    pyenv local 3.10.0
  2. Create virtualenv & activate

    python -m venv vit-tuner-env
    source vit-tuner-env/bin/activate
  3. Install dependencies

    pip install -r requirements.txt

Command

  1. Train Model
    python tools/train.py --config_file ${config_file} \
                          --exp_name ${exp_name} \
                          --csv_path ${csv_path} \
                          --image_dir ${image_dir} \
                          --split_col ${split_col} \
                          --n_epochs ${n_epochs} \
                          --y_col ${y_col} \
                          --bs ${bs} \
                          --lr ${lr} \
                          --optim ${optim} \
                          --weight_decay ${weight_decay} \
                          --weight ${weight} \
                          --device ${device} \
                          --num_workers ${num_workers} \
                          [--debug]
    • config_file: Configuration file path. All configuration files are in configs/ directory.
    • exp_name: Tag of the experiment. All experimental outputs, including model weights, training records will save at checkpoints/{exp_name} folder.
    • csv_path: csv file that contains ground truth information. The file should contain ground truth column(s) and the column for spliting training and testing set.
    • image_dir: Path to image directory.
    • n_epochs: Number of epochs.
    • y_col: Column name(s) corresponding to the ground truth(s).
    • bs: Batch size.
    • lr: Learning rate.
    • optim: Type of optimizer. SHould be one of "Adam", "SGD", "AdamW".
    • weight_decay: Weight decay for regularization.
    • weight: MOdel weight path.
    • device
    • num_workers

TODO

  1. Model Inference
  2. Linear Probe
  3. Model EMA

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published