Powerful and efficient VIT tuning tool: Integrating Feature Distillation, Masked Autoencoder, and FT-CLIP techniques.
-
Use python version 3.10.0
pyenv local 3.10.0
-
Create virtualenv & activate
python -m venv vit-tuner-env source vit-tuner-env/bin/activate
-
Install dependencies
pip install -r requirements.txt
- Train Model
python tools/train.py --config_file ${config_file} \ --exp_name ${exp_name} \ --csv_path ${csv_path} \ --image_dir ${image_dir} \ --split_col ${split_col} \ --n_epochs ${n_epochs} \ --y_col ${y_col} \ --bs ${bs} \ --lr ${lr} \ --optim ${optim} \ --weight_decay ${weight_decay} \ --weight ${weight} \ --device ${device} \ --num_workers ${num_workers} \ [--debug]
- config_file: Configuration file path. All configuration files are in configs/ directory.
- exp_name: Tag of the experiment. All experimental outputs, including model weights, training records will save at
checkpoints/{exp_name}
folder. - csv_path: csv file that contains ground truth information. The file should contain ground truth column(s) and the column for spliting training and testing set.
- image_dir: Path to image directory.
- n_epochs: Number of epochs.
- y_col: Column name(s) corresponding to the ground truth(s).
- bs: Batch size.
- lr: Learning rate.
- optim: Type of optimizer. SHould be one of "Adam", "SGD", "AdamW".
- weight_decay: Weight decay for regularization.
- weight: MOdel weight path.
- device
- num_workers
- Model Inference
- Linear Probe
- Model EMA