-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #133 from Jonas-Heinrich/master
Modify benchmarks to compare against stdlib functions
- Loading branch information
Showing
6 changed files
with
154 additions
and
184 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
//! Compares the performance of `UnicodeSegmentation::graphemes` with stdlib's UTF-8 scalar-based | ||
//! `std::str::chars`. | ||
//! | ||
//! It is expected that `std::str::chars` is faster than `UnicodeSegmentation::graphemes` since it | ||
//! does not consider the complexity of grapheme clusters. The question in this benchmark | ||
//! is how much slower full unicode handling is. | ||
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion}; | ||
use unicode_segmentation; | ||
|
||
use std::fs; | ||
use unicode_segmentation::UnicodeSegmentation; | ||
|
||
const FILES: &[&str] = &[ | ||
"arabic", | ||
"english", | ||
"hindi", | ||
"japanese", | ||
"korean", | ||
"mandarin", | ||
"russian", | ||
"source_code", | ||
]; | ||
|
||
#[inline(always)] | ||
fn grapheme(text: &str) { | ||
for c in UnicodeSegmentation::graphemes(black_box(&*text), true) { | ||
black_box(c); | ||
} | ||
} | ||
|
||
#[inline(always)] | ||
fn scalar(text: &str) { | ||
for c in black_box(&*text).chars() { | ||
black_box(c); | ||
} | ||
} | ||
|
||
fn bench_all(c: &mut Criterion) { | ||
let mut group = c.benchmark_group("chars"); | ||
|
||
for file in FILES { | ||
group.bench_with_input( | ||
BenchmarkId::new("grapheme", file), | ||
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(), | ||
|b, content| b.iter(|| grapheme(content)), | ||
); | ||
} | ||
|
||
for file in FILES { | ||
group.bench_with_input( | ||
BenchmarkId::new("scalar", file), | ||
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(), | ||
|b, content| b.iter(|| scalar(content)), | ||
); | ||
} | ||
} | ||
|
||
criterion_group!(benches, bench_all); | ||
criterion_main!(benches); |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,61 +1,37 @@ | ||
use criterion::{black_box, criterion_group, criterion_main, Criterion}; | ||
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion}; | ||
|
||
use std::fs; | ||
use unicode_segmentation::UnicodeSegmentation; | ||
|
||
fn word_bounds(c: &mut Criterion, lang: &str, path: &str) { | ||
let text = fs::read_to_string(path).unwrap(); | ||
c.bench_function(&format!("word_bounds_{}", lang), |bench| { | ||
bench.iter(|| { | ||
for w in text.split_word_bounds() { | ||
black_box(w); | ||
} | ||
}); | ||
}); | ||
} | ||
|
||
fn word_bounds_arabic(c: &mut Criterion) { | ||
word_bounds(c, "arabic", "benches/texts/arabic.txt"); | ||
} | ||
|
||
fn word_bounds_english(c: &mut Criterion) { | ||
word_bounds(c, "english", "benches/texts/english.txt"); | ||
} | ||
|
||
fn word_bounds_hindi(c: &mut Criterion) { | ||
word_bounds(c, "hindi", "benches/texts/hindi.txt"); | ||
} | ||
|
||
fn word_bounds_japanese(c: &mut Criterion) { | ||
word_bounds(c, "japanese", "benches/texts/japanese.txt"); | ||
} | ||
|
||
fn word_bounds_korean(c: &mut Criterion) { | ||
word_bounds(c, "korean", "benches/texts/korean.txt"); | ||
} | ||
|
||
fn word_bounds_mandarin(c: &mut Criterion) { | ||
word_bounds(c, "mandarin", "benches/texts/mandarin.txt"); | ||
} | ||
|
||
fn word_bounds_russian(c: &mut Criterion) { | ||
word_bounds(c, "russian", "benches/texts/russian.txt"); | ||
} | ||
|
||
fn word_bounds_source_code(c: &mut Criterion) { | ||
word_bounds(c, "source_code", "benches/texts/source_code.txt"); | ||
} | ||
|
||
criterion_group!( | ||
benches, | ||
word_bounds_arabic, | ||
word_bounds_english, | ||
word_bounds_hindi, | ||
word_bounds_japanese, | ||
word_bounds_korean, | ||
word_bounds_mandarin, | ||
word_bounds_russian, | ||
word_bounds_source_code, | ||
); | ||
|
||
const FILES: &[&str] = &[ | ||
"arabic", | ||
"english", | ||
"hindi", | ||
"japanese", | ||
"korean", | ||
"mandarin", | ||
"russian", | ||
"source_code", | ||
]; | ||
|
||
#[inline(always)] | ||
fn grapheme(text: &str) { | ||
for w in text.split_word_bounds() { | ||
black_box(w); | ||
} | ||
} | ||
|
||
fn bench_all(c: &mut Criterion) { | ||
let mut group = c.benchmark_group("word_bounds"); | ||
|
||
for file in FILES { | ||
group.bench_with_input( | ||
BenchmarkId::new("grapheme", file), | ||
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(), | ||
|b, content| b.iter(|| grapheme(content)), | ||
); | ||
} | ||
} | ||
|
||
criterion_group!(benches, bench_all); | ||
criterion_main!(benches); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
//! Compares the performance of `UnicodeSegmentation::unicode_words` with stdlib's UTF-8 | ||
//! scalar-based `std::str::split_whitespace`. | ||
//! | ||
//! It is expected that `std::str::split_whitespace` is faster than | ||
//! `UnicodeSegmentation::unicode_words` since it does not consider the complexity of grapheme | ||
//! clusters. The question in this benchmark is how much slower full unicode handling is. | ||
use criterion::{black_box, criterion_group, criterion_main, BenchmarkId, Criterion}; | ||
|
||
use std::fs; | ||
use unicode_segmentation::UnicodeSegmentation; | ||
|
||
const FILES: &[&str] = &[ | ||
"arabic", | ||
"english", | ||
"hindi", | ||
"japanese", | ||
"korean", | ||
"mandarin", | ||
"russian", | ||
"source_code", | ||
]; | ||
|
||
#[inline(always)] | ||
fn grapheme(text: &str) { | ||
for w in text.unicode_words() { | ||
black_box(w); | ||
} | ||
} | ||
|
||
#[inline(always)] | ||
fn scalar(text: &str) { | ||
for w in text.split_whitespace() { | ||
black_box(w); | ||
} | ||
} | ||
|
||
fn bench_all(c: &mut Criterion) { | ||
let mut group = c.benchmark_group("words"); | ||
|
||
for file in FILES { | ||
group.bench_with_input( | ||
BenchmarkId::new("grapheme", file), | ||
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(), | ||
|b, content| b.iter(|| grapheme(content)), | ||
); | ||
} | ||
|
||
for file in FILES { | ||
group.bench_with_input( | ||
BenchmarkId::new("scalar", file), | ||
&fs::read_to_string(format!("benches/texts/{}.txt", file)).unwrap(), | ||
|b, content| b.iter(|| scalar(content)), | ||
); | ||
} | ||
} | ||
|
||
criterion_group!(benches, bench_all); | ||
criterion_main!(benches); |