Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Projects moved to new org #2679

Merged
merged 1 commit into from
Jan 23, 2024
Merged

Projects moved to new org #2679

merged 1 commit into from
Jan 23, 2024

Conversation

nicholasdille
Copy link
Contributor

No description provided.

Copy link

github-actions bot commented Jan 23, 2024

🔍 Vulnerabilities of ghcr.io/uniget-org/tools/kpt:1.0.0-beta.35

📦 Image Reference ghcr.io/uniget-org/tools/kpt:1.0.0-beta.35
digestsha256:f5afb6530a70d54318dfa537453d7b2cf0b6ffd1ac5712d51f3ca43350860fa1
vulnerabilitiescritical: 0 high: 3 medium: 9 low: 0 unspecified: 1
platformlinux/amd64
size15 MB
packages105
critical: 0 high: 2 medium: 6 low: 0 stdlib 1.20.4 (golang)

pkg:golang/[email protected]

high : CVE--2023--29403

Affected range>=1.20.0-0
<1.20.5
Fixed version1.20.5
Description

On Unix platforms, the Go runtime does not behave differently when a binary is run with the setuid/setgid bits. This can be dangerous in certain cases, such as when dumping memory state, or assuming the status of standard i/o file descriptors.

If a setuid/setgid binary is executed with standard I/O file descriptors closed, opening any files can result in unexpected content being read or written with elevated privileges. Similarly, if a setuid/setgid program is terminated, either via panic or signal, it may leak the contents of its registers.

high : CVE--2023--39325

Affected range<1.20.10
Fixed version1.20.10
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

medium : CVE--2023--29406

Affected range>=1.20.0-0
<1.20.6
Fixed version1.20.6
Description

The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests.

With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value.

medium : CVE--2023--39319

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack.

medium : CVE--2023--39318

Affected range<1.20.8
Fixed version1.20.8
Description

The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack.

medium : CVE--2023--45284

Affected range<1.20.11
Fixed version1.20.11
Description

On Windows, The IsLocal function does not correctly detect reserved device names in some cases.

Reserved names followed by spaces, such as "COM1 ", and reserved names "COM" and "LPT" followed by superscript 1, 2, or 3, are incorrectly reported as local.

With fix, IsLocal now correctly reports these names as non-local.

medium : CVE--2023--39326

Affected range<1.20.12
Fixed version1.20.12
Description

A malicious HTTP sender can use chunk extensions to cause a receiver reading from a request or response body to read many more bytes from the network than are in the body.

A malicious HTTP client can further exploit this to cause a server to automatically read a large amount of data (up to about 1GiB) when a handler fails to read the entire body of a request.

Chunk extensions are a little-used HTTP feature which permit including additional metadata in a request or response body sent using the chunked encoding. The net/http chunked encoding reader discards this metadata. A sender can exploit this by inserting a large metadata segment with each byte transferred. The chunk reader now produces an error if the ratio of real body to encoded bytes grows too small.

medium : CVE--2023--29409

Affected range>=1.20.0-0
<1.20.7
Fixed version1.20.7
Description

Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures.

With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits.

Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable.

critical: 0 high: 1 medium: 2 low: 0 golang.org/x/net 0.8.0 (golang)

pkg:golang/golang.org/x/[email protected]

high 7.5: CVE--2023--39325 Uncontrolled Resource Consumption

Affected range<0.17.0
Fixed version0.17.0
CVSS Score7.5
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
Description

A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing.

With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection.

This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2.

The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function.

medium 6.1: CVE--2023--3978 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Affected range<0.13.0
Fixed version0.13.0
CVSS Score6.1
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N
Description

Text nodes not in the HTML namespace are incorrectly literally rendered, causing text which should be escaped to not be. This could lead to an XSS attack.

medium 5.3: CVE--2023--44487 Uncontrolled Resource Consumption

Affected range<0.17.0
Fixed version0.17.0
CVSS Score5.3
CVSS VectorCVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L
Description

HTTP/2 Rapid reset attack

The HTTP/2 protocol allows clients to indicate to the server that a previous stream should be canceled by sending a RST_STREAM frame. The protocol does not require the client and server to coordinate the cancellation in any way, the client may do it unilaterally. The client may also assume that the cancellation will take effect immediately when the server receives the RST_STREAM frame, before any other data from that TCP connection is processed.

Abuse of this feature is called a Rapid Reset attack because it relies on the ability for an endpoint to send a RST_STREAM frame immediately after sending a request frame, which makes the other endpoint start working and then rapidly resets the request. The request is canceled, but leaves the HTTP/2 connection open.

The HTTP/2 Rapid Reset attack built on this capability is simple: The client opens a large number of streams at once as in the standard HTTP/2 attack, but rather than waiting for a response to each request stream from the server or proxy, the client cancels each request immediately.

The ability to reset streams immediately allows each connection to have an indefinite number of requests in flight. By explicitly canceling the requests, the attacker never exceeds the limit on the number of concurrent open streams. The number of in-flight requests is no longer dependent on the round-trip time (RTT), but only on the available network bandwidth.

In a typical HTTP/2 server implementation, the server will still have to do significant amounts of work for canceled requests, such as allocating new stream data structures, parsing the query and doing header decompression, and mapping the URL to a resource. For reverse proxy implementations, the request may be proxied to the backend server before the RST_STREAM frame is processed. The client on the other hand paid almost no costs for sending the requests. This creates an exploitable cost asymmetry between the server and the client.

Multiple software artifacts implementing HTTP/2 are affected. This advisory was originally ingested from the swift-nio-http2 repo advisory and their original conent follows.

swift-nio-http2 specific advisory

swift-nio-http2 is vulnerable to a denial-of-service vulnerability in which a malicious client can create and then reset a large number of HTTP/2 streams in a short period of time. This causes swift-nio-http2 to commit to a large amount of expensive work which it then throws away, including creating entirely new Channels to serve the traffic. This can easily overwhelm an EventLoop and prevent it from making forward progress.

swift-nio-http2 1.28 contains a remediation for this issue that applies reset counter using a sliding window. This constrains the number of stream resets that may occur in a given window of time. Clients violating this limit will have their connections torn down. This allows clients to continue to cancel streams for legitimate reasons, while constraining malicious actors.

critical: 0 high: 0 medium: 1 low: 0 unspecified: 1jackfan.us.kg/docker/docker 23.0.6+incompatible (golang)

pkg:golang/github.com/docker/[email protected]+incompatible

medium : GHSA--jq35--85cj--fj4p

Affected range>=21.0.0
<23.0.8
Fixed version24.0.7
Description

Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via sysfs. As RAPL is an interface to access a hardware feature, it is only available when running on bare metal with the module compiled into the kernel.

By 2019, it was realized that in some cases unprivileged access to RAPL readings could be exploited as a power-based side-channel against security features including AES-NI (potentially inside a SGX enclave) and KASLR (kernel address space layout randomization). Also known as the PLATYPUS attack, Intel assigned CVE-2020-8694 and CVE-2020-8695, and AMD assigned CVE-2020-12912.

Several mitigations were applied; Intel reduced the sampling resolution via a microcode update, and the Linux kernel prevents access by non-root users since 5.10. However, this kernel-based mitigation does not apply to many container-based scenarios:

  • Unless using user namespaces, root inside a container has the same level of privilege as root outside the container, but with a slightly more narrow view of the system
  • sysfs is mounted inside containers read-only; however only read access is needed to carry out this attack on an unpatched CPU

While this is not a direct vulnerability in container runtimes, defense in depth and safe defaults are valuable and preferred, especially as this poses a risk to multi-tenant container environments running directly on affected hardware. This is provided by masking /sys/devices/virtual/powercap in the default mount configuration, and adding an additional set of rules to deny it in the default AppArmor profile.

While sysfs is not the only way to read from the RAPL subsystem, other ways of accessing it require additional capabilities such as CAP_SYS_RAWIO which is not available to containers by default, or perf paranoia level less than 1, which is a non-default kernel tunable.

References

unspecified : GMS--2023--3981 OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities

Affected range>=21.0.0
<23.0.8
Fixed versionv24.0.7
Description

Intel's RAPL (Running Average Power Limit) feature, introduced by the Sandy Bridge microarchitecture, provides software insights into hardware energy consumption. To facilitate this, Intel introduced the powercap framework in Linux kernel 3.13, which reads values via relevant MSRs (model specific registers) and provides unprivileged userspace access via sysfs.

Copy link

Attempting automerge. See https://github.com/uniget-org/tools/actions/runs/7623002326.

@nicholasdille nicholasdille merged commit 2cf692a into main Jan 23, 2024
22 checks passed
@nicholasdille nicholasdille deleted the moved-projects branch January 23, 2024 08:32
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant