forked from IntersectMBO/plutus
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
A quick isabelle experiment. (IntersectMBO#5913)
- Loading branch information
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
section \<open>Outline\<close> | ||
text \<open>This is just an experiment with presenting the datatypes and relations from Jacco's | ||
paper in Iasbelle and working out how well (or otherwise) sledgehamemr et al. can handle | ||
generating proofs for them. \<close> | ||
|
||
theory Inline | ||
imports | ||
Main | ||
HOL.String | ||
HOL.List | ||
begin | ||
|
||
type_synonym Name = string | ||
|
||
section \<open>Simple Lambda Calculus\<close> | ||
|
||
text \<open>A very cut down lambda calculus with just enough to demo the functions below. \<close> | ||
|
||
text \<open>I have commented out the Let definition because it produces some slightly complicated | ||
variable name shadowing issues that wouldn't really help with this demo. \<close> | ||
|
||
datatype AST = Var Name | ||
| Lam Name AST | ||
| App AST AST | ||
(* | Let Name AST AST *) (* The definition below does some name introduction without | ||
checking things are free, which could cause shadowing, | ||
which in turn makes the proofs harder...*) | ||
|
||
text \<open>Simple variable substitution is useful later.\<close> | ||
|
||
fun subst :: "AST \<Rightarrow> Name \<Rightarrow> AST \<Rightarrow> AST" where | ||
"subst (Var n) m e = (if (n = m) then e else Var n)" | ||
| "subst (Lam x e) m e' = Lam x (subst e m e')" | ||
| "subst (App a b) m e' = App (subst a m e') (subst b m e')" | ||
(* | "subst (Let x xv e) m e' = (Let x (subst xv m e') (subst e m e'))" (* how should this work if x = m? *) *) | ||
|
||
text \<open>Beta reduction is just substitution when done right. | ||
This isn't actually used in this demo, but it works...\<close> | ||
|
||
fun beta_reduce :: "AST \<Rightarrow> AST" where | ||
"beta_reduce (App (Lam n e) x) = (subst e n x)" | ||
| "beta_reduce e = e" | ||
|
||
section \<open>Translation Relation\<close> | ||
|
||
text \<open>In a context, it is valid to inline variable values.\<close> | ||
|
||
type_synonym Context = "Name \<Rightarrow> AST" | ||
|
||
fun extend :: "Context \<Rightarrow> (Name * AST) \<Rightarrow> Context" where | ||
"extend \<Gamma> (n, ast) = (\<lambda> x . if (x = n) then ast else \<Gamma> x)" | ||
|
||
text \<open>This defintion is from figure 2 of | ||
[the paper](https://iohk.io/en/research/library/papers/translation-certification-for-smart-contracts-scp/)\<close> | ||
|
||
inductive inline :: "Context \<Rightarrow> AST \<Rightarrow> AST \<Rightarrow> bool" ("_ \<turnstile> _ \<triangleright> _" 60) where | ||
"\<lbrakk>(\<Gamma> x) = y ; \<Gamma> \<turnstile> y \<triangleright> y' \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (Var x) \<triangleright> y'" | ||
| "\<Gamma> \<turnstile> (Var x) \<triangleright> (Var x)" | ||
(* | "\<lbrakk> \<Gamma> \<turnstile> t1 \<triangleright> t1' ; (extend \<Gamma> (x,t1)) \<turnstile> t2 \<triangleright> t2' \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (Let x t1 t2) \<triangleright> (Let x t1' t2')" *) | ||
| "\<lbrakk> \<Gamma> \<turnstile> t1 \<triangleright> t1' ; \<Gamma> \<turnstile> t2 \<triangleright> t2' \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 \<triangleright> App t1' t2'" | ||
| "\<Gamma> \<turnstile> t1 \<triangleright> t1' \<Longrightarrow> \<Gamma> \<turnstile> Lam x t1 \<triangleright> Lam x t1'" | ||
|
||
text \<open>Idempotency is useful for resolving inductive substitutions.\<close> | ||
|
||
lemma inline_idempotent : "\<Gamma> \<turnstile> x \<triangleright> x" | ||
proof (induct x) | ||
case (Var x) | ||
then show ?case by (rule inline.intros(2)) | ||
next | ||
case (Lam x1a x) | ||
then show ?case by (rule inline.intros(4)) | ||
next | ||
case (App x1 x2) | ||
then show ?case by (rule inline.intros(3)) | ||
(* This requires x1a to be free in x1 and x2, or to shadow in a consistent way, which is a hassle to demonstrate... | ||
next | ||
case (Let x1a x1 x2) | ||
then show ?case | ||
apply (rule_tac ?x="x1a" in VerifiedCompilation.inline.intros(3)) | ||
apply simp | ||
*) | ||
qed | ||
|
||
section \<open>Experiments\<close> | ||
|
||
text \<open>We can present some simple pairs of ASTs and ask sledgehammer to produce proofs. | ||
For all of these it just works with the simplifier, since they are just applications | ||
of the definition of the translation. \<close> | ||
|
||
lemma demo_inline1 : "\<lbrakk> \<Gamma> x = (Var y) \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (Var x) \<triangleright> (Var y)" | ||
by (simp add: inline.intros(1) inline_idempotent) | ||
|
||
lemma demo_inline2 : "\<lbrakk> \<Gamma> f = (Lam x (App g (Var x))) ; \<Gamma> y = (Var b) \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (App (Var f) (Var y)) \<triangleright> (App (Lam x (App g (Var x))) (Var b))" | ||
by (simp add: inline.intros(1) inline.intros(3) inline_idempotent) | ||
|
||
lemma demo_inline_2step : "\<lbrakk> \<Gamma> f = (Lam x (Lam y (App (Var x) (Var y)))) ; \<Gamma> b = (Var z) \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (App (Var f) (Var b)) \<triangleright> (App (Lam x (Lam y (App (Var x) (Var y)))) (Var z))" | ||
by (simp add: inline.intros(1) inline.intros(3) inline_idempotent) | ||
|
||
lemma demo_inline_4step : "\<lbrakk> \<Gamma> f = (Lam x (Lam y (App (Var x) (Var y)))) ; \<Gamma> b = (Var c) ; \<Gamma> c = (Var d) ; \<Gamma> d = (App (Var i) (Var j)) \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (App (Var f) (Var b)) \<triangleright> (App (Lam x (Lam y (App (Var x) (Var y)))) (App (Var i) (Var j)))" | ||
using inline.intros(1) inline.intros(3) inline_idempotent by presburger | ||
|
||
text \<open>A false example to show verification actually happen! This reqriting isn't valid and | ||
nitpick can show you a counterexample pretty quickly (although it isn't very readable).\<close> | ||
lemma demo_wrong_inline : "\<lbrakk> \<Gamma> f = (Lam x (Lam y (App (Var x) (Var y)))) \<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> (App (Var f) (Var z)) \<triangleright> (App (Var x) (Var y))" | ||
nitpick | ||
sorry | ||
|
||
end | ||
|