This container is based on ollama/ollama image to run LLM offline (local). The "stack" is deepseek-r1:1.5b -> langchain -> streamlit UI. To update the LLM model, change the model name in the ChatOllama() call.
# /src/app.py
# Currently using deepseek-r1:1.5b.
# Update the model as prefered
response = ChatOllama(model="deepseek-r1:1.5b",....)
IterDRAG technique is used for RAG.
The "</think>" tag is not printed on the Streamlit UI.
The prompt instructions are from Langchain's Ollama Deep Researcher.
Pull the image from Docker hub and run.
docker pull vpeka/local_llm
&&
docker run -p 8501:8501 -p 11434:11434 --volume /host/models:/root/.ollama vpeka/local_llm
Clone this repo, then run the following steps:
- Install Ollama
curl -fsSL https://ollama.com/install.sh | sh
- Install requirements
pip install -r requirements.txt
- Run Ollama in the background
ollama serve & sleep 5 && ollama run deepseek-r1:1.5b
- Run the streamlit app
streamlit run src/chat/app.py