Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add get_cell_counts to results utils #67

Merged
merged 6 commits into from
Jun 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 45 additions & 0 deletions deepcell_spots/utils/results_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,51 @@
import pandas as pd

from scipy.spatial import distance
from tqdm import tqdm


def get_cell_counts(df_spots):
"""Converts Polaris outputs into a DataFrame containing gene expression counts per cell.
Detection assigned to the background (value of 0 in `segmentation_output`) are discarded.

Args:
df_spots (pandas.DataFrame): Polaris result, columns are `x`, `y`, `batch_id`, `cell_id`,
`probability`, `predicted_id`, `predicted_name`, `spot_index`, `source`, and `masked`.

Returns:
pandas.DataFrame: Gene expression counts per cell, columns are `batch_id`, `cell_id`, and
columns for each decoded gene in the sample.
"""
genes = list(df_spots.predicted_name.unique())
if 'Background' in genes:
genes.remove('Background')
if 'Unknown' in genes:
genes.remove('Unknown')

genes = [item for item in genes if not('Blank' in item)]
df_cell_counts = pd.DataFrame(columns=['batch_id', 'cell_id'] + genes)

for fov in tqdm(df_spots.batch_id.unique()):
df_fov = df_spots.loc[df_spots.batch_id==fov]

for cell in range(1,np.max(df_fov.cell_id.values)+1):
df_cell = df_fov.loc[df_fov.cell_id==cell]
counts = dict(df_cell.predicted_name.value_counts())
data = {}
data['batch_id'] = [fov]
data['cell_id'] = [cell]

for gene in genes:
if gene in list(counts.keys()):
data[gene] = [counts[gene]]
else:
data[gene] = [0]
single_cell_counts = pd.DataFrame.from_dict(data)

df_cell_counts = pd.concat([df_cell_counts, single_cell_counts], axis=0)

df_cell_counts = df_cell_counts.reset_index(drop=True)
return(df_cell_counts)


def filter_results(df_spots, batch_id=None, cell_id=None,
Expand Down
22 changes: 21 additions & 1 deletion deepcell_spots/utils/results_utils_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,11 +34,31 @@
import pandas as pd
from tensorflow.python.platform import test

from deepcell_spots.utils.results_utils import filter_results, gene_visualization
from deepcell_spots.utils.results_utils import (filter_results, gene_visualization,
get_cell_counts)


class TestResultsUtils(test.TestCase):

def test_get_cell_counts(self):
df_spots = pd.DataFrame(
[
[10, 10, 0, 1, 0.95, 1, 'A', 0, 'prediction', 0],
[10, 20, 0, 1, 0.95, 1, 'A', 1, 'prediction', 0],
[10, 30, 0, 1, 0.95, 1, 'A', 2, 'prediction', 0],
[20, 20, 0, 1, 0.95, 1, 'B', 3, 'error rescue', 1],
[30, 30, 0, 1, 0.95, 1, 'C', 4, 'mixed rescue', 1]
],
columns=['x', 'y', 'batch_id', 'cell_id', 'probability', 'predicted_id',
'predicted_name', 'spot_index', 'source', 'masked']
)
df_cell_counts = get_cell_counts(df_spots)
self.assertAllEqual(df_cell_counts.batch_id.values[0], 0)
self.assertAllEqual(df_cell_counts.cell_id.values[0], 1)
self.assertAllEqual(df_cell_counts.A.values[0], 3)
self.assertAllEqual(df_cell_counts.B.values[0], 1)
self.assertAllEqual(df_cell_counts.C.values[0], 1)

def test_filter_results(self):
df_spots = pd.DataFrame(
[
Expand Down
Loading