Skip to content

vcowwy/paddle-grad-cam

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

论文

论文名称: Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

数据集:

pytorch项目地址: grad-cam


最新进展

⭐ 支持的8个method为:gradcam、scorecam、gradcam++、ablationcam、xgradcam、eigencam、eigengradcam、layercam。

Method What it does
GradCAM Weight the 2D activations by the average gradient
GradCAM++ Like GradCAM but uses second order gradients
XGradCAM Like GradCAM but scale the gradients by the normalized activations
AblationCAM Zero out activations and measure how the output drops (this repository includes a fast batched implementation)
ScoreCAM Perbutate the image by the scaled activations and measure how the output drops
EigenCAM Takes the first principle component of the 2D Activations (no class discrimination, but seems to give great results)
EigenGradCAM Like EigenCAM but with class discrimination: First principle component of Activations*Grad. Looks like GradCAM, but cleaner
LayerCAM Spatially weight the activations by positive gradients. Works better especially in lower layers

⭐ 支持的smoothing模式为aug_smooth和eigen_smooth。

To reduce noise in the CAMs, and make it fit better on the objects, two smoothing methods are supported:

  • aug_smooth=True

    Test time augmentation: increases the run time by x6.

    Applies a combination of horizontal flips, and mutiplying the image by [1.0, 1.1, 0.9].

    This has the effect of better centering the CAM around the objects.

  • eigen_smooth=True

    First principle component of activations*weights

    This has the effect of removing a lot of noise.

⭐ 使用的模型为resnet50。

./models/torch2paddle.py脚本:用于保存torchvision.models.resnet50的预训练模型到本地;

将resnet50 torch的预训练模型resnet50.pth转换为resnet50 paddle的预训练模型resnet50.pdparams

⭐ 默认加载的图片input_img为./examples/both.png。


运行命令

Usage(默认为CPU环境、不使用smooth模式):

python cam.py --image-path <path_to_image> --method <method>

CUDA环境下不使用smooth的运行命令:

python cam.py --image-path <path_to_image> --use-cuda --method <method>

使用aug_smooth的运行命令:

python cam.py --image-path <path_to_image> --method <method> --aug_smooth

使用eigen_smooth的运行命令:

python cam.py --image-path <path_to_image> --method <method> --eigen_smooth

使用aug_smooth+eigen_smooth的运行命令:

python cam.py --image-path <path_to_image> --method <method> --aug_smooth --eigen_smooth


实验过程

1、 注释掉有关gb和cam_gb的部分,只查看cam_image结果,将支持的8个method结果保存在/log/output_paddle文件夹下。

其中:

  • log_no_smooth文件夹下是不使用smooth的8个method的结果。

  • log_aug_smooth文件夹下是aug_smooth模式下的8个method的结果。

  • log_eigen_smooth文件夹下是eigen_smooth模式下的8个method的结果。

  • loh_aug_eigen_smooth文件夹下是aug+eigen smooth模式下的8个method的结果。

2、 同理将pytorch的8个method结果cam_image保存在log/output_torch文件夹中。

其中:

  • log_no_smooth文件夹下是不使用smooth的8个method的结果。

  • log_aug_smooth文件夹下是aug_smooth模式下的8个method的结果。

  • log_eigen_smooth文件夹下是eigen_smooth模式下的8个method的结果。

  • loh_aug_eigen_smooth文件夹下是aug+eigen smooth模式下的8个method的结果。


结果对比

smooth模式结果对比

smooth模式 AblationCAM aug smooth eigen smooth aug+eigen smooth
paddle实现
torch实现

8种method结果对比

Method Paddle Pytorch
GradCAM
ScoreCAM
GradCAMPlusPlus
AblationCAM
XGradCAM
EigenCAM
EigenGradCAM
LayerCAM

总结

⭐ 对比了pytorch和paddle对于相同输入(both.png)的输出结果cam_image

⭐ 各method、各smooth模式下,比较cam_image的.npy文件,pytorch和paddle完全一致。


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages