Skip to content

Commit

Permalink
Merge remote-tracking branch 'upstream/main' into suppression
Browse files Browse the repository at this point in the history
  • Loading branch information
joerunde committed Aug 22, 2024
2 parents db74ce2 + 15310b5 commit 7755a28
Show file tree
Hide file tree
Showing 4 changed files with 146 additions and 13 deletions.
144 changes: 140 additions & 4 deletions benchmarks/benchmark_prefix_caching.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,45 @@
"""
Benchmark the efficiency of prefix caching.
This script allows you to benchmark the performance of
a model with and without prefix caching using either fixed prompts
or prompts sampled from the ShareGPT dataset.
Fixed example usage:
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-prompts 1 \
--repeat-count 100
ShareGPT example usage:
# This command samples 20 prompts with input lengths
# between 128 and 256 tokens from the ShareGPT dataset,
# then replicates each prompt 5 times.
python benchmark_prefix_caching.py \
--model meta-llama/Llama-2-7b-chat-hf \
--dataset-path /path/to/ShareGPT_V3_unfiltered_cleaned_split.json \
--enable-prefix-caching \
--num-prompts 20 \
--repeat-count 5 \
--input-length-range 128:256
"""

import json
import random
import time
from typing import List, Optional, Tuple

from transformers import PreTrainedTokenizerBase

from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParser

try:
from vllm.transformers_utils.tokenizer import get_tokenizer
except ImportError:
from backend_request_func import get_tokenizer

PROMPT = "You are a helpful assistant in recognizes the content of tables in markdown format. Here is a table as fellows. You need to answer my question about the table.\n# Table\n|Opening|Opening|Sl. No.|Film|Cast|Director|Music Director|Notes|\n|----|----|----|----|----|----|----|----|\n|J A N|9|1|Agni Pushpam|Jayabharathi, Kamalahasan|Jeassy|M. K. Arjunan||\n|J A N|16|2|Priyamvada|Mohan Sharma, Lakshmi, KPAC Lalitha|K. S. Sethumadhavan|V. Dakshinamoorthy||\n|J A N|23|3|Yakshagaanam|Madhu, Sheela|Sheela|M. S. Viswanathan||\n|J A N|30|4|Paalkkadal|Sheela, Sharada|T. K. Prasad|A. T. Ummer||\n|F E B|5|5|Amma|Madhu, Srividya|M. Krishnan Nair|M. K. Arjunan||\n|F E B|13|6|Appooppan|Thikkurissi Sukumaran Nair, Kamal Haasan|P. Bhaskaran|M. S. Baburaj||\n|F E B|20|7|Srishti|Chowalloor Krishnankutty, Ravi Alummoodu|K. T. Muhammad|M. S. Baburaj||\n|F E B|20|8|Vanadevatha|Prem Nazir, Madhubala|Yusufali Kechery|G. Devarajan||\n|F E B|27|9|Samasya|Madhu, Kamalahaasan|K. Thankappan|Shyam||\n|F E B|27|10|Yudhabhoomi|K. P. Ummer, Vidhubala|Crossbelt Mani|R. K. Shekhar||\n|M A R|5|11|Seemantha Puthran|Prem Nazir, Jayabharathi|A. B. Raj|M. K. Arjunan||\n|M A R|12|12|Swapnadanam|Rani Chandra, Dr. Mohandas|K. G. George|Bhaskar Chandavarkar||\n|M A R|19|13|Thulavarsham|Prem Nazir, sreedevi, Sudheer|N. Sankaran Nair|V. Dakshinamoorthy||\n|M A R|20|14|Aruthu|Kaviyoor Ponnamma, Kamalahasan|Ravi|G. Devarajan||\n|M A R|26|15|Swimming Pool|Kamal Haasan, M. G. Soman|J. Sasikumar|M. K. Arjunan||\n\n# Question\nWhat' s the content in the (1,1) cells\n" # noqa: E501


Expand All @@ -15,7 +52,83 @@ def test_prefix(llm=None, sampling_params=None, prompts=None):
print(f"cost time {end_time - start_time}")


def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
input_length_range: Tuple[int, int],
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None and fixed_output_len < 4:
raise ValueError("output_len too small")

# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
# Filter out the conversations with less than 2 turns.
dataset = [data for data in dataset if len(data["conversations"]) >= 2]
# Only keep the first two turns of each conversation.
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]

# Shuffle the dataset.
random.shuffle(dataset)

min_len, max_len = input_length_range

# Filter out sequences that are too long or too short
filtered_dataset: List[Tuple[str, int, int]] = []
for i in range(len(dataset)):
if len(filtered_dataset) == num_requests:
break

# Tokenize the prompts and completions.
prompt = dataset[i][0]
prompt_token_ids = tokenizer(prompt).input_ids
completion = dataset[i][1]
completion_token_ids = tokenizer(completion).input_ids
prompt_len = len(prompt_token_ids)
output_len = len(completion_token_ids
) if fixed_output_len is None else fixed_output_len
if prompt_len < 4 or output_len < 4:
# Prune too short sequences.
continue
if min_len <= prompt_len <= max_len:
filtered_dataset.append((prompt, prompt_len, output_len))

return filtered_dataset


def repeat_and_sort_requests(requests: List[Tuple[str, int, int]],
repeat_count: int,
sort: bool = False) -> List[str]:
repeated_requests = requests * repeat_count
if sort:
repeated_requests.sort(key=lambda x: x[1])
else:
random.shuffle(repeated_requests)
return [req[0] for req in repeated_requests]


def main(args):
tokenizer = get_tokenizer(args.model, trust_remote_code=True)
input_length_range = tuple(map(int, args.input_length_range.split(':')))

if args.dataset_path is not None:
print(f"Start to sample {args.num_prompts} prompts"
"from {args.dataset_path}")
filtered_datasets = sample_requests(
dataset_path=args.dataset_path,
num_requests=args.num_prompts,
tokenizer=tokenizer,
input_length_range=input_length_range,
fixed_output_len=args.output_len,
)
else:
prompt_len = len(tokenizer(PROMPT).input_ids)
filtered_datasets = [(PROMPT, prompt_len, args.output_len)
] * args.num_prompts

llm = LLM(model=args.model,
tokenizer_mode='auto',
trust_remote_code=True,
Expand All @@ -24,10 +137,13 @@ def main(args):
tensor_parallel_size=args.tensor_parallel_size,
enable_prefix_caching=args.enable_prefix_caching)

num_prompts = 100
prompts = [PROMPT] * num_prompts
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)

print("Testing filtered datasets")
prompts = repeat_and_sort_requests(filtered_datasets,
repeat_count=args.repeat_count,
sort=args.sort)

print("------warm up------")
test_prefix(
llm=llm,
Expand All @@ -45,11 +161,15 @@ def main(args):

if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the performance with or without automatic '
'prefix caching.')
description=
'Benchmark the performance with or without automatic prefix caching.')
parser.add_argument('--model',
type=str,
default='baichuan-inc/Baichuan2-13B-Chat')
parser.add_argument("--dataset-path",
type=str,
default=None,
help="Path to the dataset.")
parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
parser.add_argument('--output-len', type=int, default=10)
parser.add_argument('--enable-prefix-caching',
Expand All @@ -58,5 +178,21 @@ def main(args):
parser.add_argument('--use-v2-block-manager',
action='store_true',
help='Use BlockSpaceMangerV2')
parser.add_argument('--num-prompts',
type=int,
default=1,
help="Number of the prompts sampled from dataset")
parser.add_argument('--repeat-count',
type=int,
default=100,
help='Number of times to repeat each prompt')
parser.add_argument('--sort',
action='store_true',
help='Sort prompts by input length')
parser.add_argument('--input-length-range',
type=str,
default='128:256',
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')
args = parser.parse_args()
main(args)
4 changes: 2 additions & 2 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -234,10 +234,10 @@ Multimodal Language Models
- Image
- :code:`openbmb/MiniCPM-V-2` (see note), :code:`openbmb/MiniCPM-Llama3-V-2_5`, :code:`openbmb/MiniCPM-V-2_6`, etc.
-
* - :code: `UltravoxModel`
* - :code:`UltravoxModel`
- Ultravox
- Audio
- :code: `fixie-ai/ultravox-v0_3`
- :code:`fixie-ai/ultravox-v0_3`
-

.. note::
Expand Down
2 changes: 1 addition & 1 deletion examples/offline_inference_audio_language.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on vision language models.
with the correct prompt format on audio language models.
For most models, the prompt format should follow corresponding examples
on HuggingFace model repository.
Expand Down
9 changes: 3 additions & 6 deletions vllm/engine/arg_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@

import vllm.envs as envs
from vllm.config import (CacheConfig, DecodingConfig, DeviceConfig,
EngineConfig, LoadConfig, LoRAConfig, ModelConfig,
ObservabilityConfig, ParallelConfig,
EngineConfig, LoadConfig, LoadFormat, LoRAConfig,
ModelConfig, ObservabilityConfig, ParallelConfig,
PromptAdapterConfig, SchedulerConfig,
SpeculativeConfig, TokenizerPoolConfig)
from vllm.executor.executor_base import ExecutorBase
Expand Down Expand Up @@ -214,10 +214,7 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser:
'--load-format',
type=str,
default=EngineArgs.load_format,
choices=[
'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
'bitsandbytes'
],
choices=[f.value for f in LoadFormat],
help='The format of the model weights to load.\n\n'
'* "auto" will try to load the weights in the safetensors format '
'and fall back to the pytorch bin format if safetensors format '
Expand Down

0 comments on commit 7755a28

Please sign in to comment.