Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Adding support for MSFT Phi-3.5-MoE #7729

Merged
merged 14 commits into from
Aug 30, 2024
4 changes: 4 additions & 0 deletions docs/source/models/supported_models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -143,6 +143,10 @@ Decoder-only Language Models
- Phi-3-Small
- :code:`microsoft/Phi-3-small-8k-instruct`, :code:`microsoft/Phi-3-small-128k-instruct`, etc.
-
* - :code:`PhiMoEForCausalLM`
- Phi-3.5-MoE
- :code:`microsoft/Phi-3.5-MoE-instruct`, etc.
-
* - :code:`PersimmonForCausalLM`
- Persimmon
- :code:`adept/persimmon-8b-base`, :code:`adept/persimmon-8b-chat`, etc.
Expand Down
111 changes: 111 additions & 0 deletions tests/models/test_phimoe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
"""Compare the outputs of HF and vLLM for moe models using greedy sampling.
Run `pytest tests/models/test_phimoe.py`.
"""
import pytest
import torch

from vllm.utils import is_cpu

from .utils import check_logprobs_close

MODELS = [
"microsoft/Phi-3.5-MoE-instruct",
]


def test_phimoe_routing_function():
from vllm.model_executor.models.phimoe import phimoe_routing_function
test_case = {
0: {
"hidden_states":
torch.tensor([1, 2, 3, 4, 5, 6, 7, 8],
dtype=torch.float32,
requires_grad=False).view(4, 2),
"gating_output":
torch.tensor([0.1, 0.2, 0.3, 0.4],
dtype=torch.float32,
requires_grad=False),
"topk":
2,
"renormalize":
False,
},
1: {
"hidden_states":
torch.tensor([1, 2, 3, 4, 5, 6, 7, 8],
dtype=torch.float32,
requires_grad=False).view(4, 2),
"gating_output":
torch.tensor([0.4, 0.2, 0.3, 0.4],
dtype=torch.float32,
requires_grad=False),
"topk":
2,
"renormalize":
False,
}
}

ground_truth = {
0: {
"topk_weights":
torch.tensor([1., 1.], dtype=torch.float32, requires_grad=False),
"topk_ids":
torch.tensor([3, 2], dtype=torch.long, requires_grad=False),
},
1: {
"topk_weights":
torch.tensor([0.5, 1.], dtype=torch.float32, requires_grad=False),
"topk_ids":
torch.tensor([0, 3], dtype=torch.long, requires_grad=False),
}
}

for test_id in test_case:
topk_weights, topk_ids = phimoe_routing_function(**test_case[test_id])
assert torch.allclose(topk_weights,
ground_truth[test_id]["topk_weights"])
assert torch.equal(topk_ids, ground_truth[test_id]["topk_ids"])


def get_gpu_memory():
try:
props = torch.cuda.get_device_properties(torch.cuda.current_device())
gpu_memory = props.total_memory / (1024**3)
return gpu_memory
except Exception:
return 0


@pytest.mark.skipif(condition=is_cpu(),
reason="This test takes a lot time to run on CPU, "
"and vllm CI's disk space is not enough for this model.")
@pytest.mark.skipif(condition=get_gpu_memory() < 100,
reason="Skip this test if GPU memory is insufficient.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [64])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)

with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
{
"3328": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
},
"1024": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 4
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"256": {
"BLOCK_SIZE_M": 32,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"768": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"1792": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 4
},
"2560": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"2816": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 4
},
"3584": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"512": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"3840": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 4
},
"1280": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"2304": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"4096": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
{
"3840": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"1792": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"3584": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
},
"512": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
},
"3072": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"2048": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
},
"2816": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 4
},
"1280": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 2
},
"768": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
},
"4096": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"3328": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"2560": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"1024": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 32,
"GROUP_SIZE_M": 8,
"num_warps": 4,
"num_stages": 4
},
"2304": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 2
},
"1536": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2
},
"256": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 4
}
}
Loading
Loading