Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) #8029

Merged
merged 35 commits into from
Sep 5, 2024

Conversation

alex-jw-brooks
Copy link
Contributor

@alex-jw-brooks alex-jw-brooks commented Aug 30, 2024

FIX #962
FIX #7017
FIX #7192

Currently Qwen models in VLLM skip loading the visual transformer weights. This PR adds support for loading the visual weights (if they're present) and adds multimodal support, e.g., for qwen-vl and qwen-vl-chat.

This PR only concerns Qwen-VL (version 1). For Qwen2-VL, please refer to #7905.

Summary:

  • Adds multimodal input mapper/processor for Qwen models
  • Ports the visual encoder from qwen-vl/chat
  • Only only initializes the visual model and processes multimodal components if the model has a visual config
  • Enables .chat for qwen models, adds an example for qwen-vl to the offline visual language samples
  • Switches the existing Qwen test to Qwen/Qwen-7B-Chat to make sure we can still load non multimodal Qwen models

Some examples that may be helpful:

i. Running qwen-vl as a model in the offline inference vision language examples:

$ python examples/offline_inference_vision_language.py --model_type qwen_vl

Sample output The Tokyo Skytree tower is seen through cherry blossoms.

ii. Example of running a text only model:

from vllm import LLM, SamplingParams

llm = LLM(model="Qwen/Qwen-7B-Chat", trust_remote_code=True)

prompt = "<|im_start|>user\nWho were the founders of Microsoft?\n<|im_end|>\n<|im_start|>assistant\n"
stop_token_ids = None

sampling_params = SamplingParams(temperature=0.2,
                                 max_tokens=64,
                                 stop_token_ids=stop_token_ids)

inputs = [{"prompt": prompt}]
outputs = llm.generate(inputs, sampling_params=sampling_params)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Sample output: Microsoft was founded by Bill Gates and Paul Allen in 1975.<|im_end|>

iii. Visual embeddings example
Multiple pictures may be passed as embeddings. In general, these should be of shape # image, 256, 4096, since Qwen-vl/chat encode images into fixed 256 token contexts. Sample and output below.

from vllm import LLM, SamplingParams
import torch

# Embeddings for 2 images (i.e., [2, 256, 4096])
# One of these images it the VLLM tokyo skytree pic, the other is
# the example used in Qwen model docs of a girl and her dog.
embeds = torch.load(...)

llm = LLM(model="Qwen/Qwen-VL-Chat", trust_remote_code=True)

# NOTE: You don't need to put anything between <img> / </img> since in VLLM,
# the loaded multimodal data is provided separately.
get_img_prompt = lambda img_num: f"Picture {img_num}: <img></img>\n"
prompt = f"<|im_start|>Picture 1: {get_img_prompt(1)} {get_img_prompt(2)} Can you compare these two pictures in english?\n<|im_end|>\n<|im_start|>assistant\n"
stop_token_ids = None

sampling_params = SamplingParams(temperature=0.2,
                                 max_tokens=64,
                                 stop_token_ids=stop_token_ids)

inputs = [{"prompt": prompt, "multi_modal_data": {"image": embeds}}]
outputs = llm.generate(inputs, sampling_params=sampling_params)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Sample output: Picture 1 is of a woman sitting on the beach with her dog, both of them holding hands and smiling at each other. Picture 2 is of the Tokyo Skytree tower in Japan, surrounded by pink cherry blossom trees.<|im_end|>

iv. Chat example
Here's an example of calling qwen-vl-chat with an image with OpenAPI and the sample chatml template.

Start the server:

python vllm/entrypoints/openai/api_server.py \
    --device cuda \
    --model Qwen/Qwen-VL-Chat \
    --tokenizer Qwen/Qwen-VL-Chat \
    --trust-remote-code \
    --api-key token-abc123 \
    --chat-template examples/template_chatml.jinja &

Client example:

from openai import OpenAI

client = OpenAI(base_url="http://localhost:8000/v1", api_key="token-abc123")

completion = client.chat.completions.create(
  model="Qwen/Qwen-VL-Chat",
  messages=[
    {
        "role": "user", "content": [
          {"type": "image_url", "image_url": {"url": "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"}},
          {"type": "text", "text": "Describe this image in English. "},
        ]
    }
  ]
)

print(completion.choices[0].message)

Example Response:

ChatCompletionMessage(content="A radar chart is shown with several axes, including 'VQA2v3', 'GQA', 'LmivaBench', 'SEED-Bench', 'VizWiz', 'SQA-IMG', 'MMBench-CN', 'TextVQA', 'BLIP-2', 'InstructBLIP', 'Qwen-VL-Chat', and 'LLA-VA.1.5'. Each axis has a value associated with it, with 'VQA2v3' being the highest, and 'LmivaBench' being the lowest. Some axes also have negative values.<|im_end|>\n<|im_start|>\n", refusal=None, role='assistant', function_call=None, tool_calls=[])

BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE


PR Checklist (Click to Expand)

Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.

PR Title and Classification

Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:

  • [Bugfix] for bug fixes.
  • [CI/Build] for build or continuous integration improvements.
  • [Doc] for documentation fixes and improvements.
  • [Model] for adding a new model or improving an existing model. Model name should appear in the title.
  • [Frontend] For changes on the vLLM frontend (e.g., OpenAI API server, LLM class, etc.)
  • [Kernel] for changes affecting CUDA kernels or other compute kernels.
  • [Core] for changes in the core vLLM logic (e.g., LLMEngine, AsyncLLMEngine, Scheduler, etc.)
  • [Hardware][Vendor] for hardware-specific changes. Vendor name should appear in the prefix (e.g., [Hardware][AMD]).
  • [Misc] for PRs that do not fit the above categories. Please use this sparingly.

Note: If the PR spans more than one category, please include all relevant prefixes.

Code Quality

The PR need to meet the following code quality standards:

  • We adhere to Google Python style guide and Google C++ style guide.
  • Pass all linter checks. Please use format.sh to format your code.
  • The code need to be well-documented to ensure future contributors can easily understand the code.
  • Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.
  • Please add documentation to docs/source/ if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.

Notes for Large Changes

Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with rfc-required and might not go through the PR.

What to Expect for the Reviews

The goal of the vLLM team is to be a transparent reviewing machine. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process:

  • After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.
  • After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.
  • After the review, the reviewer will put an action-required label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.
  • Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.

Thank You

Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone!

Copy link

👋 Hi! Thank you for contributing to the vLLM project.
Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run fastcheck CI which consists a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of default ones by unblocking the steps in your fast-check build on Buildkite UI.

Once the PR is approved and ready to go, please make sure to run full CI as it is required to merge (or just use auto-merge).

To run full CI, you can do one of these:

  • Comment /ready on the PR
  • Add ready label to the PR
  • Enable auto-merge.

🚀

@alex-jw-brooks alex-jw-brooks changed the title Qwen multimodal [MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) Aug 30, 2024
Signed-off-by: Alex-Brooks <[email protected]>
Signed-off-by: Alex-Brooks <[email protected]>
Signed-off-by: Alex-Brooks <[email protected]>
@alex-jw-brooks alex-jw-brooks marked this pull request as ready for review September 1, 2024 13:37
@alex-jw-brooks
Copy link
Contributor Author

/ready

@alex-jw-brooks
Copy link
Contributor Author

Cool, sounds good, thanks @DarkLight1337! 🤞

I saw you had resolved this comment: #8029 (comment) - I added parallel linear layers for the MLP in the visual encoder, but am still trying to rework the VisualAttention to use QKVParallelLinear and memory_efficient_attention_forward from xformers, like most of the other visual encoders implemented in VLLM currently do.

Did you want me to try to make that get that into this PR once the test is resolved, or would it be better off in a follow-up PR to optimize this model? I think the rest of changes should be taken care of 🙂

@DarkLight1337
Copy link
Member

Cool, sounds good, thanks @DarkLight1337! 🤞

I saw you had resolved this comment: #8029 (comment) - I added parallel linear layers for the MLP in the visual encoder, but am still trying to rework the VisualAttention to use QKVParallelLinear and memory_efficient_attention_forward from xformers, like most of the other visual encoders implemented in VLLM currently do.

Did you want me to try to make that get that into this PR once the test is resolved, or would it be better off in a follow-up PR to optimize this model? I think the rest of changes should be taken care of 🙂

I wanted to parallelize the MLP first as it's easier. We can parallelize the attention module layer in another PR as it's a bit more complicated.

@alex-jw-brooks
Copy link
Contributor Author

Cool, that sounds good to me!

@DarkLight1337
Copy link
Member

DarkLight1337 commented Sep 5, 2024

For the dummy data, you should pad the input with text tokens so that (combined with the image tokens) there are at least a total of seq_len tokens. You can see dummy_seq_data_for_clip for an example.

@alex-jw-brooks
Copy link
Contributor Author

Nice catch! Pushed the fix to pad it if the image prompt isn't long enough

Copy link
Member

@DarkLight1337 DarkLight1337 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

VLM tests pass now. Thanks again for your effort!

@DarkLight1337 DarkLight1337 enabled auto-merge (squash) September 5, 2024 12:37
@DarkLight1337 DarkLight1337 merged commit 9da25a8 into vllm-project:main Sep 5, 2024
49 checks passed
@DarkLight1337
Copy link
Member

The PR has been merged. Some follow-ups to be done:

  • TP support for vision encoder, particularly the transformer module.
  • Testing multi-image input for Qwen-VL so we can officially support it in the docs.

@zhangfan-algo
Copy link

Can we support qwen2-vl-7B?

@DarkLight1337
Copy link
Member

Can we support qwen2-vl-7B?

It is WIP in #7905

@syngokhan
Copy link

I want to launch the model as an API server. But I am catching this as an error. Here I have downloaded and installed vllm in its latest form. (v.0.6.0 and after)

(image) root@gapxivrgpup03:/home/glb90108385# CUDA_VISIBLE_DEVICES=1 python /opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py --model /opt/GPT/MODELS/Qwen2-VL-7B-Instruct/ --host 10.12.112.162 --port 9002 --tensor-parallel-size 1 --trust-remote-code  --max-model-len 32000 --enforce-eager --gpu-memory-utilization 1.0
INFO 09-06 06:36:52 api_server.py:495] vLLM API server version 0.6.0
INFO 09-06 06:36:52 api_server.py:496] args: Namespace(host='10.12.112.162', port=9002, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, model='/opt/GPT/MODELS/Qwen2-VL-7B-Instruct/', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, download_dir=None, load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=32000, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=1.0, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=True, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, override_neuron_config=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None)
Traceback (most recent call last):
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 531, in <module>
    asyncio.run(run_server(args))
  File "/opt/anaconda3/envs/image/lib/python3.10/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/opt/anaconda3/envs/image/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
    return future.result()
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 498, in run_server
    async with build_async_engine_client(args) as async_engine_client:
  File "/opt/anaconda3/envs/image/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 110, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
  File "/opt/anaconda3/envs/image/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 132, in build_async_engine_client_from_engine_args
    if (model_is_embedding(engine_args.model, engine_args.trust_remote_code,
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 73, in model_is_embedding
    return ModelConfig(model=model_name,
  File "/opt/VLLM_IMAGE/vllm/vllm/config.py", line 224, in __init__
    self.max_model_len = _get_and_verify_max_len(
  File "/opt/VLLM_IMAGE/vllm/vllm/config.py", line 1740, in _get_and_verify_max_len
    assert "factor" in rope_scaling
AssertionError

@DarkLight1337
Copy link
Member

I want to launch the model as an API server. But I am catching this as an error. Here I have downloaded and installed vllm in its latest form. (v.0.6.0 and after)

(image) root@gapxivrgpup03:/home/glb90108385# CUDA_VISIBLE_DEVICES=1 python /opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py --model /opt/GPT/MODELS/Qwen2-VL-7B-Instruct/ --host 10.12.112.162 --port 9002 --tensor-parallel-size 1 --trust-remote-code  --max-model-len 32000 --enforce-eager --gpu-memory-utilization 1.0
INFO 09-06 06:36:52 api_server.py:495] vLLM API server version 0.6.0
INFO 09-06 06:36:52 api_server.py:496] args: Namespace(host='10.12.112.162', port=9002, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, model='/opt/GPT/MODELS/Qwen2-VL-7B-Instruct/', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, download_dir=None, load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=32000, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=1.0, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=True, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, override_neuron_config=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None)
Traceback (most recent call last):
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 531, in <module>
    asyncio.run(run_server(args))
  File "/opt/anaconda3/envs/image/lib/python3.10/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/opt/anaconda3/envs/image/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
    return future.result()
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 498, in run_server
    async with build_async_engine_client(args) as async_engine_client:
  File "/opt/anaconda3/envs/image/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 110, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
  File "/opt/anaconda3/envs/image/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 132, in build_async_engine_client_from_engine_args
    if (model_is_embedding(engine_args.model, engine_args.trust_remote_code,
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 73, in model_is_embedding
    return ModelConfig(model=model_name,
  File "/opt/VLLM_IMAGE/vllm/vllm/config.py", line 224, in __init__
    self.max_model_len = _get_and_verify_max_len(
  File "/opt/VLLM_IMAGE/vllm/vllm/config.py", line 1740, in _get_and_verify_max_len
    assert "factor" in rope_scaling
AssertionError

This PR only adds support for Qwen-VL (version 1). For Qwen2-VL, please refer to #7905 .

@zhangfan-algo
Copy link

I want to launch the model as an API server. But I am catching this as an error. Here I have downloaded and installed vllm in its latest form. (v.0.6.0 and after)

(image) root@gapxivrgpup03:/home/glb90108385# CUDA_VISIBLE_DEVICES=1 python /opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py --model /opt/GPT/MODELS/Qwen2-VL-7B-Instruct/ --host 10.12.112.162 --port 9002 --tensor-parallel-size 1 --trust-remote-code  --max-model-len 32000 --enforce-eager --gpu-memory-utilization 1.0
INFO 09-06 06:36:52 api_server.py:495] vLLM API server version 0.6.0
INFO 09-06 06:36:52 api_server.py:496] args: Namespace(host='10.12.112.162', port=9002, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_auto_tool_choice=False, tool_call_parser=None, model='/opt/GPT/MODELS/Qwen2-VL-7B-Instruct/', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=True, download_dir=None, load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=32000, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=1.0, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=True, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, override_neuron_config=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None)
Traceback (most recent call last):
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 531, in <module>
    asyncio.run(run_server(args))
  File "/opt/anaconda3/envs/image/lib/python3.10/asyncio/runners.py", line 44, in run
    return loop.run_until_complete(main)
  File "/opt/anaconda3/envs/image/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
    return future.result()
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 498, in run_server
    async with build_async_engine_client(args) as async_engine_client:
  File "/opt/anaconda3/envs/image/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 110, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
  File "/opt/anaconda3/envs/image/lib/python3.10/contextlib.py", line 199, in __aenter__
    return await anext(self.gen)
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 132, in build_async_engine_client_from_engine_args
    if (model_is_embedding(engine_args.model, engine_args.trust_remote_code,
  File "/opt/VLLM_IMAGE/vllm/vllm/entrypoints/openai/api_server.py", line 73, in model_is_embedding
    return ModelConfig(model=model_name,
  File "/opt/VLLM_IMAGE/vllm/vllm/config.py", line 224, in __init__
    self.max_model_len = _get_and_verify_max_len(
  File "/opt/VLLM_IMAGE/vllm/vllm/config.py", line 1740, in _get_and_verify_max_len
    assert "factor" in rope_scaling
AssertionError

This PR only adds support for Qwen-VL (version 1). For Qwen2-VL, please refer to #7905 .

I still have the same bug after pulling down the latest github code

@DarkLight1337
Copy link
Member

It's not a bug. Qwen2-VL hasn't been added to vLLM yet. Please read my above comment.

@zhangfan-algo
Copy link

When do we expect to support qwen2 vl series?

@DarkLight1337
Copy link
Member

We are waiting for transformers to update so that we can load Qwen2-VL from their config directly.

opus24 added a commit to Hyper-Accel/vllm that referenced this pull request Sep 10, 2024
commit a1d8742
Author: Simon Mo <[email protected]>
Date:   Mon Sep 9 23:21:00 2024 -0700

    Add NVIDIA Meetup slides, announce AMD meetup, and add contact info (vllm-project#8319)

commit 6cd5e5b
Author: Dipika Sikka <[email protected]>
Date:   Mon Sep 9 23:02:52 2024 -0400

    [Misc] Fused MoE Marlin support for GPTQ (vllm-project#8217)

commit c7cb5c3
Author: Kyle Sayers <[email protected]>
Date:   Mon Sep 9 16:27:26 2024 -0400

    [Misc] GPTQ Activation Ordering (vllm-project#8135)

commit f9b4a2d
Author: Vladislav Kruglikov <[email protected]>
Date:   Mon Sep 9 21:20:46 2024 +0300

    [Bugfix] Correct adapter usage for cohere and jamba (vllm-project#8292)

commit 58fcc85
Author: Adam Lugowski <[email protected]>
Date:   Mon Sep 9 11:16:37 2024 -0700

    [Frontend] Add progress reporting to run_batch.py (vllm-project#8060)

    Co-authored-by: Adam Lugowski <[email protected]>

commit 08287ef
Author: Kyle Mistele <[email protected]>
Date:   Mon Sep 9 09:45:11 2024 -0500

    [Bugfix] Streamed tool calls now more strictly follow OpenAI's format; ensures Vercel AI SDK compatibility (vllm-project#8272)

commit 4ef41b8
Author: Alexander Matveev <[email protected]>
Date:   Sun Sep 8 00:01:51 2024 -0400

    [Bugfix] Fix async postprocessor in case of preemption (vllm-project#8267)

commit cfe712b
Author: Joe Runde <[email protected]>
Date:   Sat Sep 7 14:03:16 2024 -0600

    [CI/Build] Use python 3.12 in cuda image (vllm-project#8133)

    Signed-off-by: Joe Runde <[email protected]>

commit b962ee1
Author: sumitd2 <[email protected]>
Date:   Sat Sep 7 23:48:40 2024 +0530

    ppc64le: Dockerfile fixed, and a script for buildkite (vllm-project#8026)

commit 36bf815
Author: Isotr0py <[email protected]>
Date:   Sun Sep 8 01:45:44 2024 +0800

    [Model][VLM] Decouple weight loading logic for `Paligemma` (vllm-project#8269)

commit e807125
Author: Isotr0py <[email protected]>
Date:   Sat Sep 7 16:38:23 2024 +0800

    [Model][VLM] Support multi-images inputs for InternVL2 models (vllm-project#8201)

commit 9f68e00
Author: Cyrus Leung <[email protected]>
Date:   Sat Sep 7 16:02:39 2024 +0800

    [Bugfix] Fix broken OpenAI tensorizer test (vllm-project#8258)

commit ce2702a
Author: youkaichao <[email protected]>
Date:   Fri Sep 6 22:40:46 2024 -0700

    [tpu][misc] fix typo (vllm-project#8260)

commit 795b662
Author: Wei-Sheng Chin <[email protected]>
Date:   Fri Sep 6 20:18:16 2024 -0700

    Enable Random Prefix Caching in Serving Profiling Tool (benchmark_serving.py) (vllm-project#8241)

commit 2f707fc
Author: Cyrus Leung <[email protected]>
Date:   Sat Sep 7 10:57:24 2024 +0800

    [Model] Multi-input support for LLaVA (vllm-project#8238)

commit 41e95c5
Author: Kyle Mistele <[email protected]>
Date:   Fri Sep 6 21:49:01 2024 -0500

    [Bugfix] Fix Hermes tool call chat template bug (vllm-project#8256)

    Co-authored-by: Kyle Mistele <[email protected]>

commit 12dd715
Author: William Lin <[email protected]>
Date:   Fri Sep 6 17:48:48 2024 -0700

    [misc] [doc] [frontend] LLM torch profiler support (vllm-project#7943)

commit 29f49cd
Author: Patrick von Platen <[email protected]>
Date:   Sat Sep 7 01:02:05 2024 +0200

    [Model] Allow loading from original Mistral format (vllm-project#8168)

    Co-authored-by: Michael Goin <[email protected]>

commit 23f3222
Author: Dipika Sikka <[email protected]>
Date:   Fri Sep 6 18:29:03 2024 -0400

    [Misc] Remove `SqueezeLLM` (vllm-project#8220)

commit 9db52ea
Author: rasmith <[email protected]>
Date:   Fri Sep 6 17:26:09 2024 -0500

    [Kernel] [Triton] Memory optimization for awq_gemm and awq_dequantize, 2x throughput (vllm-project#8248)

commit 1447c97
Author: Alexey Kondratiev(AMD) <[email protected]>
Date:   Fri Sep 6 14:51:03 2024 -0400

    [CI/Build] Increasing timeout for multiproc worker tests (vllm-project#8203)

commit de80783
Author: Rui Qiao <[email protected]>
Date:   Fri Sep 6 09:18:35 2024 -0700

    [Misc] Use ray[adag] dependency instead of cuda (vllm-project#7938)

commit e5cab71
Author: afeldman-nm <[email protected]>
Date:   Fri Sep 6 12:01:14 2024 -0400

    [Frontend] Add --logprobs argument to `benchmark_serving.py` (vllm-project#8191)

commit baa5467
Author: Nick Hill <[email protected]>
Date:   Thu Sep 5 20:39:29 2024 -0700

    [BugFix] Fix Granite model configuration (vllm-project#8216)

commit db3bf7c
Author: Jiaxin Shan <[email protected]>
Date:   Thu Sep 5 18:10:33 2024 -0700

    [Core] Support load and unload LoRA in api server (vllm-project#6566)

    Co-authored-by: Jee Jee Li <[email protected]>

commit 2febcf2
Author: sroy745 <[email protected]>
Date:   Thu Sep 5 13:25:29 2024 -0700

    [Documentation][Spec Decode] Add documentation about lossless guarantees in Speculative Decoding in vLLM (vllm-project#7962)

commit 2ee4528
Author: Michael Goin <[email protected]>
Date:   Thu Sep 5 11:09:46 2024 -0400

    Move verify_marlin_supported to GPTQMarlinLinearMethod (vllm-project#8165)

commit 9da25a8
Author: Alex Brooks <[email protected]>
Date:   Thu Sep 5 06:48:10 2024 -0600

    [MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) (vllm-project#8029)

    Signed-off-by: Alex-Brooks <[email protected]>
    Co-authored-by: DarkLight1337 <[email protected]>

commit 8685ba1
Author: [email protected] <[email protected]>
Date:   Thu Sep 5 17:03:37 2024 +0530

    Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) (vllm-project#7860)

commit 288a938
Author: Cyrus Leung <[email protected]>
Date:   Thu Sep 5 18:51:53 2024 +0800

    [Doc] Indicate more information about supported modalities (vllm-project#8181)

commit e39ebf5
Author: Elfie Guo <[email protected]>
Date:   Wed Sep 4 22:12:26 2024 -0700

    [Core/Bugfix] Add query dtype as per FlashInfer API requirements. (vllm-project#8173)

commit ba262c4
Author: Kevin H. Luu <[email protected]>
Date:   Wed Sep 4 20:33:12 2024 -0700

    [ci] Mark LoRA test as soft-fail (vllm-project#8160)

    Signed-off-by: kevin <[email protected]>

commit 4624d98
Author: Woosuk Kwon <[email protected]>
Date:   Wed Sep 4 20:31:48 2024 -0700

    [Misc] Clean up RoPE forward_native (vllm-project#8076)

commit 1afc931
Author: William Lin <[email protected]>
Date:   Wed Sep 4 17:35:36 2024 -0700

    [bugfix] >1.43 constraint for openai (vllm-project#8169)

    Co-authored-by: Michael Goin <[email protected]>

commit e01c2be
Author: Maureen McElaney <[email protected]>
Date:   Wed Sep 4 19:50:13 2024 -0400

    [Doc] [Misc] Create CODE_OF_CONDUCT.md (vllm-project#8161)

commit 32e7db2
Author: Simon Mo <[email protected]>
Date:   Wed Sep 4 16:34:27 2024 -0700

    Bump version to v0.6.0 (vllm-project#8166)

commit 008cf88
Author: Harsha vardhan manoj Bikki <[email protected]>
Date:   Wed Sep 4 16:33:43 2024 -0700

    [Neuron] Adding support for adding/ overriding neuron configuration a… (vllm-project#8062)

    Co-authored-by: Harsha Bikki <[email protected]>

commit 77d9e51
Author: Cody Yu <[email protected]>
Date:   Wed Sep 4 13:23:22 2024 -0700

    [MISC] Replace input token throughput with total token throughput (vllm-project#8164)

    Co-authored-by: Michael Goin <[email protected]>

commit e02ce49
Author: Kyle Mistele <[email protected]>
Date:   Wed Sep 4 15:18:13 2024 -0500

    [Feature] OpenAI-Compatible Tools API + Streaming for Hermes & Mistral models (vllm-project#5649)

    Co-authored-by: constellate <[email protected]>
    Co-authored-by: Kyle Mistele <[email protected]>

commit 561d6f8
Author: Woosuk Kwon <[email protected]>
Date:   Wed Sep 4 13:05:50 2024 -0700

    [CI] Change test input in Gemma LoRA test (vllm-project#8163)

commit d1dec64
Author: alexeykondrat <[email protected]>
Date:   Wed Sep 4 14:57:54 2024 -0400

    [CI/Build][ROCm] Enabling LoRA tests on ROCm (vllm-project#7369)

    Co-authored-by: Simon Mo <[email protected]>

commit 2ad2e56
Author: Cody Yu <[email protected]>
Date:   Wed Sep 4 11:53:25 2024 -0700

    [MISC] Consolidate FP8 kv-cache tests (vllm-project#8131)

commit d331156
Author: wnma <[email protected]>
Date:   Wed Sep 4 18:55:37 2024 +0800

    [Bugfix] remove post_layernorm in siglip (vllm-project#8106)

commit ccd7207
Author: TimWang <[email protected]>
Date:   Wed Sep 4 14:17:05 2024 +0800

    chore: Update check-wheel-size.py to read MAX_SIZE_MB from env (vllm-project#8103)

commit 855c262
Author: Cyrus Leung <[email protected]>
Date:   Wed Sep 4 13:22:17 2024 +0800

    [Frontend] Multimodal support in offline chat (vllm-project#8098)

commit 2be8ec6
Author: Peter Salas <[email protected]>
Date:   Tue Sep 3 21:38:21 2024 -0700

    [Model] Add Ultravox support for multiple audio chunks (vllm-project#7963)

commit e16fa99
Author: Dipika Sikka <[email protected]>
Date:   Tue Sep 3 22:12:41 2024 -0400

    [Misc] Update fbgemmfp8 to use `vLLMParameters` (vllm-project#7972)

    Co-authored-by: Michael Goin <[email protected]>

commit 61f4a93
Author: Woosuk Kwon <[email protected]>
Date:   Tue Sep 3 18:35:33 2024 -0700

    [TPU][Bugfix] Use XLA rank for persistent cache path (vllm-project#8137)

commit d4db9f5
Author: Nick Hill <[email protected]>
Date:   Tue Sep 3 17:57:41 2024 -0700

    [Benchmark] Add `--async-engine` option to benchmark_throughput.py (vllm-project#7964)

commit 2188a60
Author: Dipika Sikka <[email protected]>
Date:   Tue Sep 3 17:21:44 2024 -0400

    [Misc] Update `GPTQ` to use `vLLMParameters` (vllm-project#7976)

commit dc0b606
Author: Simon Mo <[email protected]>
Date:   Tue Sep 3 14:11:42 2024 -0700

    [CI] Change PR remainder to avoid at-mentions (vllm-project#8134)

commit 0af3abe
Author: Woosuk Kwon <[email protected]>
Date:   Tue Sep 3 13:29:24 2024 -0700

    [TPU][Bugfix] Fix next_token_ids shape (vllm-project#8128)

commit f1575dc
Author: Kevin H. Luu <[email protected]>
Date:   Tue Sep 3 13:25:09 2024 -0700

    [ci] Fix GHA workflow  (vllm-project#8129)

    Signed-off-by: kevin <[email protected]>

commit c02638e
Author: tomeras91 <[email protected]>
Date:   Tue Sep 3 22:37:08 2024 +0300

    [CI/Build] make pip install vllm work in macos (for import only) (vllm-project#8118)

commit 652c83b
Author: Antoni Baum <[email protected]>
Date:   Tue Sep 3 12:28:25 2024 -0700

    [Misc] Raise a more informative exception in add/remove_logger (vllm-project#7750)

commit 6d646d0
Author: Alexander Matveev <[email protected]>
Date:   Tue Sep 3 14:50:29 2024 -0400

    [Core] Optimize Async + Multi-step (vllm-project#8050)

commit 95a178f
Author: Kevin H. Luu <[email protected]>
Date:   Tue Sep 3 11:32:27 2024 -0700

    [CI] Only PR reviewers/committers can trigger CI on PR (vllm-project#8124)

    Signed-off-by: kevin <[email protected]>

commit bd852f2
Author: Cody Yu <[email protected]>
Date:   Tue Sep 3 10:49:18 2024 -0700

    [Performance] Enable chunked prefill and prefix caching together (vllm-project#8120)

    Co-authored-by: Tao He <[email protected]>
    Co-authored-by: Juelianqvq <[email protected]>

commit ec26653
Author: Isotr0py <[email protected]>
Date:   Tue Sep 3 21:37:52 2024 +0800

    [Bugfix][VLM] Add fallback to SDPA for ViT model running on CPU backend (vllm-project#8061)

commit 0fbc669
Author: Woosuk Kwon <[email protected]>
Date:   Mon Sep 2 20:35:42 2024 -0700

    [Bugfix] Fix single output condition in output processor (vllm-project#7881)

commit 6e36f4f
Author: wang.yuqi <[email protected]>
Date:   Tue Sep 3 05:20:12 2024 +0800

    improve chunked prefill performance

    [Bugfix] Fix vllm-project#7592 vllm 0.5.4 enable_chunked_prefill throughput is slightly lower than 0.5.3~0.5.0. (vllm-project#7874)

commit dd2a6a8
Author: Isotr0py <[email protected]>
Date:   Mon Sep 2 23:48:56 2024 +0800

    [Bugfix] Fix internlm2 tensor parallel inference (vllm-project#8055)

commit 4ca65a9
Author: Isotr0py <[email protected]>
Date:   Mon Sep 2 20:43:26 2024 +0800

    [Core][Bugfix] Accept GGUF model without .gguf extension (vllm-project#8056)

commit e2b2aa5
Author: Woosuk Kwon <[email protected]>
Date:   Sun Sep 1 23:09:46 2024 -0700

    [TPU] Align worker index with node boundary (vllm-project#7932)

commit e6a26ed
Author: Lily Liu <[email protected]>
Date:   Sun Sep 1 21:23:29 2024 -0700

    [SpecDecode][Kernel] Flashinfer Rejection Sampling (vllm-project#7244)

commit f8d6014
Author: Shawn Tan <[email protected]>
Date:   Sun Sep 1 21:37:18 2024 -0400

    [Model] Add Granite model (vllm-project#7436)

    Co-authored-by: Nick Hill <[email protected]>

commit 5b86b19
Author: Roger Wang <[email protected]>
Date:   Sun Sep 1 14:46:57 2024 -0700

    [Misc] Optional installation of audio related packages (vllm-project#8063)

commit 5231f08
Author: Roger Wang <[email protected]>
Date:   Sat Aug 31 16:35:53 2024 -0700

    [Frontend][VLM] Add support for multiple multi-modal items (vllm-project#8049)

commit 8423aef
Author: Robert Shaw <[email protected]>
Date:   Sat Aug 31 15:44:03 2024 -0400

    [BugFix][Core] Multistep Fix Crash on Request Cancellation (vllm-project#8059)

commit 4f5d844
Author: Nicolò Lucchesi <[email protected]>
Date:   Sat Aug 31 09:27:58 2024 +0200

    [Bugfix] Fix ModelScope models in v0.5.5 (vllm-project#8037)

commit d05f0a9
Author: Cyrus Leung <[email protected]>
Date:   Sat Aug 31 13:26:55 2024 +0800

    [Bugfix] Fix import error in Phi-3.5-MoE (vllm-project#8052)

commit 622f8ab
Author: Pavani Majety <[email protected]>
Date:   Fri Aug 30 22:18:50 2024 -0700

    [Bugfix] bugfix and add model test for flashinfer fp8 kv cache. (vllm-project#8013)

commit 1248e85
Author: Wenxiang <[email protected]>
Date:   Sat Aug 31 03:42:57 2024 +0800

    [Model] Adding support for MSFT Phi-3.5-MoE (vllm-project#7729)

    Co-authored-by: Your Name <[email protected]>
    Co-authored-by: Zeqi Lin <[email protected]>
    Co-authored-by: Zeqi Lin <[email protected]>

commit 2684efc
Author: Woosuk Kwon <[email protected]>
Date:   Fri Aug 30 09:01:26 2024 -0700

    [TPU][Bugfix] Fix tpu type api (vllm-project#8035)

commit 058344f
Author: Kaunil Dhruv <[email protected]>
Date:   Fri Aug 30 08:21:02 2024 -0700

    [Frontend]-config-cli-args (vllm-project#7737)

    Co-authored-by: Cyrus Leung <[email protected]>
    Co-authored-by: Kaunil Dhruv <[email protected]>

commit 98cef6a
Author: Cyrus Leung <[email protected]>
Date:   Fri Aug 30 23:20:34 2024 +0800

    [Core] Increase default `max_num_batched_tokens` for multimodal models (vllm-project#8028)

commit f97be32
Author: Jungho Christopher Cho <[email protected]>
Date:   Sat Aug 31 00:19:27 2024 +0900

    [VLM][Model] TP support for ViTs (vllm-project#7186)

    Co-authored-by: Roger Wang <[email protected]>
    Co-authored-by: Roger Wang <[email protected]>

commit afd39a4
Author: Cyrus Leung <[email protected]>
Date:   Fri Aug 30 23:03:28 2024 +0800

    [Bugfix] Fix import error in Exaone model (vllm-project#8034)

commit 2148441
Author: Richard Liu <[email protected]>
Date:   Fri Aug 30 00:27:40 2024 -0700

    [TPU] Support single and multi-host TPUs on GKE (vllm-project#7613)

commit dc13e99
Author: Yohan Na <[email protected]>
Date:   Fri Aug 30 15:34:20 2024 +0900

    [MODEL] add Exaone model support (vllm-project#7819)

commit 34a0e96
Author: Avshalom Manevich <[email protected]>
Date:   Fri Aug 30 11:11:39 2024 +0700

    [Kernel] changing fused moe kernel chunk size default to 32k (vllm-project#7995)

commit 80c7b08
Author: Woosuk Kwon <[email protected]>
Date:   Thu Aug 29 19:35:29 2024 -0700

    [TPU] Async output processing for TPU (vllm-project#8011)

commit 428dd14
Author: afeldman-nm <[email protected]>
Date:   Thu Aug 29 22:19:08 2024 -0400

    [Core] Logprobs support in Multi-step (vllm-project#7652)

commit 4abed65
Author: Cyrus Leung <[email protected]>
Date:   Fri Aug 30 08:49:04 2024 +0800

    [VLM] Disallow overflowing `max_model_len` for multimodal models (vllm-project#7998)

commit 0c785d3
Author: Wei-Sheng Chin <[email protected]>
Date:   Thu Aug 29 16:48:11 2024 -0700

    Add more percentiles and latencies (vllm-project#7759)

commit 4664cea
Author: chenqianfzh <[email protected]>
Date:   Thu Aug 29 16:09:08 2024 -0700

    support bitsandbytes 8-bit and FP4 quantized models (vllm-project#7445)

commit 257afc3
Author: Harsha vardhan manoj Bikki <[email protected]>
Date:   Thu Aug 29 13:58:14 2024 -0700

    [Neuron] Adding support for context-lenght, token-gen buckets. (vllm-project#7885)

    Co-authored-by: Harsha Bikki <[email protected]>

commit 86a677d
Author: Dipika Sikka <[email protected]>
Date:   Thu Aug 29 16:46:55 2024 -0400

    [misc] update tpu int8 to use new vLLM Parameters (vllm-project#7973)

commit d78789a
Author: Isotr0py <[email protected]>
Date:   Fri Aug 30 03:54:49 2024 +0800

    [Bugfix] Fix incorrect vocal embedding shards for GGUF model in tensor parallelism (vllm-project#7954)

commit c334b18
Author: kushanam <[email protected]>
Date:   Thu Aug 29 12:15:04 2024 -0700

    extend cuda graph size for H200 (vllm-project#7894)

    Co-authored-by: youkaichao <[email protected]>

commit 6b34215
Author: Pavani Majety <[email protected]>
Date:   Thu Aug 29 11:53:11 2024 -0700

    [Core][Kernels] Enable FP8 KV Cache with Flashinfer backend.  + BugFix for kv_cache_dtype=auto (vllm-project#7985)

    Co-authored-by: Simon Mo <[email protected]>
    Co-authored-by: Cody Yu <[email protected]>

commit 3f60f22
Author: Alexander Matveev <[email protected]>
Date:   Thu Aug 29 14:18:26 2024 -0400

    [Core] Combine async postprocessor and multi-step (vllm-project#7921)

commit f205c09
Author: Jonas M. Kübler <[email protected]>
Date:   Thu Aug 29 07:18:13 2024 +0200

    [Bugfix] Unify rank computation across regular decoding and speculative decoding (vllm-project#7899)

commit ef99a78
Author: youkaichao <[email protected]>
Date:   Wed Aug 28 21:27:06 2024 -0700

    Revert "[Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available." (vllm-project#7982)

commit 74d5543
Author: Peter Salas <[email protected]>
Date:   Wed Aug 28 20:24:31 2024 -0700

    [VLM][Core] Fix exceptions on ragged NestedTensors (vllm-project#7974)

commit a7f65c2
Author: youkaichao <[email protected]>
Date:   Wed Aug 28 17:32:26 2024 -0700

    [torch.compile] remove reset (vllm-project#7975)

commit 4289cad
Author: Nick Hill <[email protected]>
Date:   Wed Aug 28 17:22:43 2024 -0700

    [Frontend] Minor optimizations to zmq decoupled front-end (vllm-project#7957)

    Co-authored-by: Robert Shaw <rshaw@neuralmagic>

commit af59df0
Author: Michael Goin <[email protected]>
Date:   Wed Aug 28 19:19:17 2024 -0400

    Remove faulty Meta-Llama-3-8B-Instruct-FP8.yaml lm-eval test (vllm-project#7961)

commit ce6bf3a
Author: youkaichao <[email protected]>
Date:   Wed Aug 28 16:10:12 2024 -0700

    [torch.compile] avoid Dynamo guard evaluation overhead (vllm-project#7898)

    Co-authored-by: Woosuk Kwon <[email protected]>

commit 3cdfe1f
Author: bnellnm <[email protected]>
Date:   Wed Aug 28 18:11:49 2024 -0400

    [Bugfix] Make torch registration of punica ops optional (vllm-project#7970)

commit fdd9daa
Author: Mor Zusman <[email protected]>
Date:   Thu Aug 29 01:06:52 2024 +0300

    [Kernel/Model] Migrate mamba_ssm and causal_conv1d kernels to vLLM (vllm-project#7651)

commit 8c56e57
Author: Stas Bekman <[email protected]>
Date:   Wed Aug 28 13:54:23 2024 -0700

    [Doc] fix 404 link (vllm-project#7966)

commit eeffde1
Author: Woosuk Kwon <[email protected]>
Date:   Wed Aug 28 13:10:21 2024 -0700

    [TPU] Upgrade PyTorch XLA nightly (vllm-project#7967)

commit e5697d1
Author: rasmith <[email protected]>
Date:   Wed Aug 28 14:37:47 2024 -0500

    [Kernel] [Triton] [AMD] Adding Triton implementations awq_dequantize and awq_gemm to support AWQ (vllm-project#7386)

commit b98cc28
Author: Pavani Majety <[email protected]>
Date:   Wed Aug 28 10:01:22 2024 -0700

    [Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available. (vllm-project#7798)

    Co-authored-by: Simon Mo <[email protected]>

commit ef9baee
Author: Cyrus Leung <[email protected]>
Date:   Wed Aug 28 23:11:18 2024 +0800

    [Bugfix][VLM] Fix incompatibility between vllm-project#7902 and vllm-project#7230 (vllm-project#7948)

commit 98c12cf
Author: Stas Bekman <[email protected]>
Date:   Wed Aug 28 05:12:32 2024 -0700

    [Doc] fix the autoAWQ example (vllm-project#7937)

commit f52a43a
Author: youkaichao <[email protected]>
Date:   Wed Aug 28 01:27:07 2024 -0700

    [ci][test] fix pp test failure (vllm-project#7945)

commit e358053
Author: Cody Yu <[email protected]>
Date:   Wed Aug 28 00:36:31 2024 -0700

    [Performance] Enable chunked prefill and prefix caching together (vllm-project#7753)
dtrifiro pushed a commit to opendatahub-io/vllm that referenced this pull request Sep 12, 2024
Jeffwan pushed a commit to aibrix/vllm that referenced this pull request Sep 19, 2024
siddharth9820 pushed a commit to axonn-ai/vllm that referenced this pull request Sep 30, 2024
Alvant pushed a commit to compressa-ai/vllm that referenced this pull request Oct 26, 2024
KuntaiDu pushed a commit to KuntaiDu/vllm that referenced this pull request Nov 20, 2024
@MotorBottle
Copy link

FIX #962 FIX #7017 FIX #7192

Currently Qwen models in VLLM skip loading the visual transformer weights. This PR adds support for loading the visual weights (if they're present) and adds multimodal support, e.g., for qwen-vl and qwen-vl-chat.

This PR only concerns Qwen-VL (version 1). For Qwen2-VL, please refer to #7905.

Summary:

  • Adds multimodal input mapper/processor for Qwen models
  • Ports the visual encoder from qwen-vl/chat
  • Only only initializes the visual model and processes multimodal components if the model has a visual config
  • Enables .chat for qwen models, adds an example for qwen-vl to the offline visual language samples
  • Switches the existing Qwen test to Qwen/Qwen-7B-Chat to make sure we can still load non multimodal Qwen models

Some examples that may be helpful:

i. Running qwen-vl as a model in the offline inference vision language examples:

$ python examples/offline_inference_vision_language.py --model_type qwen_vl

Sample output The Tokyo Skytree tower is seen through cherry blossoms.

ii. Example of running a text only model:

from vllm import LLM, SamplingParams

llm = LLM(model="Qwen/Qwen-7B-Chat", trust_remote_code=True)

prompt = "<|im_start|>user\nWho were the founders of Microsoft?\n<|im_end|>\n<|im_start|>assistant\n"
stop_token_ids = None

sampling_params = SamplingParams(temperature=0.2,
                                 max_tokens=64,
                                 stop_token_ids=stop_token_ids)

inputs = [{"prompt": prompt}]
outputs = llm.generate(inputs, sampling_params=sampling_params)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Sample output: Microsoft was founded by Bill Gates and Paul Allen in 1975.<|im_end|>

iii. Visual embeddings example Multiple pictures may be passed as embeddings. In general, these should be of shape # image, 256, 4096, since Qwen-vl/chat encode images into fixed 256 token contexts. Sample and output below.

from vllm import LLM, SamplingParams
import torch

# Embeddings for 2 images (i.e., [2, 256, 4096])
# One of these images it the VLLM tokyo skytree pic, the other is
# the example used in Qwen model docs of a girl and her dog.
embeds = torch.load(...)

llm = LLM(model="Qwen/Qwen-VL-Chat", trust_remote_code=True)

# NOTE: You don't need to put anything between <img> / </img> since in VLLM,
# the loaded multimodal data is provided separately.
get_img_prompt = lambda img_num: f"Picture {img_num}: <img></img>\n"
prompt = f"<|im_start|>Picture 1: {get_img_prompt(1)} {get_img_prompt(2)} Can you compare these two pictures in english?\n<|im_end|>\n<|im_start|>assistant\n"
stop_token_ids = None

sampling_params = SamplingParams(temperature=0.2,
                                 max_tokens=64,
                                 stop_token_ids=stop_token_ids)

inputs = [{"prompt": prompt, "multi_modal_data": {"image": embeds}}]
outputs = llm.generate(inputs, sampling_params=sampling_params)

for o in outputs:
    generated_text = o.outputs[0].text
    print(generated_text)

Sample output: Picture 1 is of a woman sitting on the beach with her dog, both of them holding hands and smiling at each other. Picture 2 is of the Tokyo Skytree tower in Japan, surrounded by pink cherry blossom trees.<|im_end|>

iv. Chat example Here's an example of calling qwen-vl-chat with an image with OpenAPI and the sample chatml template.

Start the server:

python vllm/entrypoints/openai/api_server.py \
    --device cuda \
    --model Qwen/Qwen-VL-Chat \
    --tokenizer Qwen/Qwen-VL-Chat \
    --trust-remote-code \
    --api-key token-abc123 \
    --chat-template examples/template_chatml.jinja &

Client example:

from openai import OpenAI

client = OpenAI(base_url="http://localhost:8000/v1", api_key="token-abc123")

completion = client.chat.completions.create(
  model="Qwen/Qwen-VL-Chat",
  messages=[
    {
        "role": "user", "content": [
          {"type": "image_url", "image_url": {"url": "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"}},
          {"type": "text", "text": "Describe this image in English. "},
        ]
    }
  ]
)

print(completion.choices[0].message)

Example Response:

ChatCompletionMessage(content="A radar chart is shown with several axes, including 'VQA2v3', 'GQA', 'LmivaBench', 'SEED-Bench', 'VizWiz', 'SQA-IMG', 'MMBench-CN', 'TextVQA', 'BLIP-2', 'InstructBLIP', 'Qwen-VL-Chat', and 'LLA-VA.1.5'. Each axis has a value associated with it, with 'VQA2v3' being the highest, and 'LmivaBench' being the lowest. Some axes also have negative values.<|im_end|>\n<|im_start|>\n", refusal=None, role='assistant', function_call=None, tool_calls=[])

BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE

PR Checklist (Click to Expand)

Hi and I followed the sample code to deploy Qwen-VL-Chat with vllm docker. While deployment was successful, I kept getting ou of vocabulary OOV errors no matter how I test my inputs.

How I deployed:

sudo docker run --runtime nvidia --gpus '"device=0,1"' --ipc=host -p 18434:8000   -v hf_cache:/root/.cache/huggingface   -d   -e HF_ENDPOINT=https://hf-mirror.com   -e HF_HUB_ENABLE_HF_TRANSFER=0   --name Qwen-VL-Chat   vllm/vllm-openai:latest   --model Qwen/Qwen-VL-Chat   --tokenizer Qwen/Qwen-VL-Chat   --tensor-parallel-size 2   --trust-remote-code   --chat-template examples/template_chatml.jinja   --dtype='half'

Error msg:

Error in API call: 400 {"object":"error","message":"Token id 151859 is out of vocabulary","type":"BadRequestError","param":null,"code":400}

Test code:

import requests
import base64
import time

# Function to encode the image to base64
def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def main():
    # Path to your image
    image_path = "test2.jpg"
    base64_image = encode_image(image_path)

    # API configuration
    api_base = "http://192.168.50.18:18434/v1/chat/completions"
    model_name = "Qwen/Qwen-VL-Chat"

    # Input prompt
    user_prompt_text = (
        "What's inside the image?"
    )

    # Prepare the payload
    payload_template = {
        "model": model_name,
        "messages": [
            {
                "role": "user",
                "content": [
                    # {"type": "image_url", "image_url": {"url": "https://i.imgur.com/T3S0cvu.jpeg"}},
                    {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}},
                    {"type": "text", "text": user_prompt_text}
                ]
            }
        ],
        "max_tokens": 300
    }

    for i in range(1, 2):
        print(f"===== API called {i} times =====")
        startTime = time.time()

        response = requests.post(api_base, json=payload_template)

        if response.status_code != 200:
            print("Error in API call:", response.status_code, response.text)
        else:
            completion = response.json()["choices"][0]["message"]["content"]
            tokens = response.json()["usage"]["prompt_tokens"]
            print("Model Response:", completion)
            print("tokens:", tokens)

        print("time used: {:.2f} 秒".format(time.time() - startTime))
        print()

if __name__ == "__main__":
    main()

I tried to search the whole observable web and could not find any similar case. So I'm replying here for possible help.

Much appreciated!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ready ONLY add when PR is ready to merge/full CI is needed
Projects
None yet
5 participants