Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CI/Build] Update Ruff version #8469

Merged
merged 10 commits into from
Sep 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/ruff.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,10 +25,10 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install ruff==0.1.5 codespell==2.3.0 tomli==2.0.1 isort==5.13.2
pip install -r requirements-lint.txt
- name: Analysing the code with ruff
run: |
ruff .
ruff check .
- name: Spelling check with codespell
run: |
codespell --toml pyproject.toml
Expand Down
4 changes: 1 addition & 3 deletions benchmarks/kernels/graph_machete_bench.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,7 @@
rows = int(math.ceil(len(results) / 2))
fig, axs = plt.subplots(rows, 2, figsize=(12, 5 * rows))
axs = axs.flatten()
axs_idx = 0
for shape, data in results.items():
for axs_idx, (shape, data) in enumerate(results.items()):
plt.sca(axs[axs_idx])
df = pd.DataFrame(data)
sns.lineplot(data=df,
Expand All @@ -59,6 +58,5 @@
palette="Dark2")
plt.title(f"Shape: {shape}")
plt.ylabel("time (median, s)")
axs_idx += 1
plt.tight_layout()
plt.savefig("graph_machete_bench.pdf")
4 changes: 2 additions & 2 deletions format.sh
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,7 @@ echo 'vLLM codespell: Done'

# Lint specified files
lint() {
ruff "$@"
ruff check "$@"
}

# Lint files that differ from main branch. Ignores dirs that are not slated
Expand All @@ -175,7 +175,7 @@ lint_changed() {

if ! git diff --diff-filter=ACM --quiet --exit-code "$MERGEBASE" -- '*.py' '*.pyi' &>/dev/null; then
git diff --name-only --diff-filter=ACM "$MERGEBASE" -- '*.py' '*.pyi' | xargs \
ruff
ruff check
fi

}
Expand Down
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@ ignore = [
"E731",
# Loop control variable not used within loop body
"B007",
# f-string format
"UP032",
]

[tool.mypy]
Expand Down
2 changes: 1 addition & 1 deletion requirements-lint.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
yapf==0.32.0
toml==0.10.2
tomli==2.0.1
ruff==0.1.5
ruff==0.6.5
codespell==2.3.0
isort==5.13.2
clang-format==18.1.5
Expand Down
5 changes: 1 addition & 4 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -158,10 +158,7 @@ def should_do_global_cleanup_after_test(request) -> bool:
to initialize torch.
"""

if request.node.get_closest_marker("skip_global_cleanup"):
return False

return True
return not request.node.get_closest_marker("skip_global_cleanup")


@pytest.fixture(autouse=True)
Expand Down
5 changes: 1 addition & 4 deletions tests/lora/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,10 +65,7 @@ def should_do_global_cleanup_after_test(request) -> bool:
to initialize torch.
"""

if request.node.get_closest_marker("skip_global_cleanup"):
return False

return True
return not request.node.get_closest_marker("skip_global_cleanup")


@pytest.fixture(autouse=True)
Expand Down
2 changes: 1 addition & 1 deletion tests/multimodal/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

def assert_nested_tensors_equal(expected: NestedTensors,
actual: NestedTensors):
assert type(expected) == type(actual)
assert type(expected) == type(actual) # noqa: E721
if isinstance(expected, torch.Tensor):
assert torch.equal(expected, actual)
else:
Expand Down
5 changes: 1 addition & 4 deletions tests/test_cache_block_hashing.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,8 +66,7 @@ def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int,

hashes.append([])
prompts = [prefix + prompt for prompt in sample_prompts]
seq_id = 0
for prompt in prompts:
for seq_id, prompt in enumerate(prompts):
hashes[-1].append([])
prompt_token_ids = tokenizer.encode(prompt)
seq = Sequence(seq_id,
Expand All @@ -83,8 +82,6 @@ def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int,
for idx in range(num_blocks):
hashes[-1][-1].append(seq.hash_of_block(idx))

seq_id += 1

# Check that hashes made with two prefixes with different first blocks are
# different everywhere.
for hash0, hash1 in zip(flatten_2d(hashes[0]), flatten_2d(hashes[1])):
Expand Down
4 changes: 2 additions & 2 deletions tests/test_logger.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ def test_an_error_is_raised_when_custom_logging_config_file_does_not_exist():
configuration occurs."""
with pytest.raises(RuntimeError) as ex_info:
_configure_vllm_root_logger()
assert ex_info.type == RuntimeError
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved
assert ex_info.type == RuntimeError # noqa: E721
assert "File does not exist" in str(ex_info)


Expand Down Expand Up @@ -152,7 +152,7 @@ def test_an_error_is_raised_when_custom_logging_config_is_unexpected_json(
logging_config_file.name):
with pytest.raises(ValueError) as ex_info:
_configure_vllm_root_logger()
assert ex_info.type == ValueError
assert ex_info.type == ValueError # noqa: E721
assert "Invalid logging config. Expected Dict, got" in str(ex_info)


Expand Down
4 changes: 1 addition & 3 deletions tests/worker/test_encoder_decoder_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -464,8 +464,7 @@ def test_prepare_decode(
# each sequence) in the decode phase

expected_selected_token_indices = []
selected_token_start_idx = 0
for seq_len in seq_lens:
for selected_token_start_idx, seq_len in enumerate(seq_lens):
# Compute the index offset of the final token in each
# sequence's decoded outputs; since a single token is
# decoded per iteration per sequence, then the length
Expand All @@ -474,7 +473,6 @@ def test_prepare_decode(
# generated tokens is 0 (i.e. the expected sampling index
# for a given sequence is just `selected_token_start_idx`)
expected_selected_token_indices.append(selected_token_start_idx)
selected_token_start_idx += 1

sampling_metadata = model_input.sampling_metadata
actual = sampling_metadata.selected_token_indices
Expand Down
4 changes: 1 addition & 3 deletions tests/worker/test_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,10 +241,8 @@ def test_prepare_decode_cuda_graph(batch_size):

# Verify Sampling
expected_selected_token_indices = []
selected_token_start_idx = 0
for _ in context_lens:
for selected_token_start_idx, _ in enumerate(context_lens):
expected_selected_token_indices.append(selected_token_start_idx)
selected_token_start_idx += 1
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list,
seq_lens,
Expand Down
2 changes: 1 addition & 1 deletion vllm/adapter_commons/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def list_adapters(registered_adapters: Dict[int, Any]) -> Dict[int, Any]:

def get_adapter(adapter_id: int,
registered_adapters: Dict[int, Any]) -> Optional[Any]:
return registered_adapters.get(adapter_id, None)
return registered_adapters.get(adapter_id)


## worker functions
Expand Down
6 changes: 2 additions & 4 deletions vllm/attention/backends/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,8 @@ def is_block_tables_empty(block_tables: Union[None, Dict]):
"""
if block_tables is None:
return True
if isinstance(block_tables, dict) and all(
value is None for value in block_tables.values()):
return True
return False
return (isinstance(block_tables, dict)
and all(value is None for value in block_tables.values()))


def compute_slot_mapping_start_idx(is_prompt: bool, query_len: int,
Expand Down
4 changes: 1 addition & 3 deletions vllm/core/block/prefix_caching_block.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,9 +417,7 @@ def get_prefix_cache_hit_rate(self) -> float:

def is_block_cached(self, block: Block) -> bool:
assert block.content_hash is not None
if block.content_hash in self._cached_blocks:
return True
return False
return block.content_hash in self._cached_blocks

def promote_to_immutable_block(self, block: Block) -> BlockId:
"""Once a mutable block is full, it can be promoted to an immutable
Expand Down
4 changes: 1 addition & 3 deletions vllm/core/block_manager_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -399,9 +399,7 @@ def can_swap_out(self, seq_group: SequenceGroup) -> bool:
"""
alloc_status = self._can_swap(seq_group, Device.CPU,
SequenceStatus.RUNNING)
if alloc_status == AllocStatus.OK:
return True
return False
return alloc_status == AllocStatus.OK

def swap_out(self, seq_group: SequenceGroup) -> List[Tuple[int, int]]:
"""Returns the block id mapping (from GPU to CPU) generated by
Expand Down
6 changes: 3 additions & 3 deletions vllm/engine/async_llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -806,7 +806,7 @@ async def generate(
request_id: The unique id of the request.
lora_request: LoRA request to use for generation, if any.
trace_headers: OpenTelemetry trace headers.
prompt_adapter_request: Prompt Adapter request to use
prompt_adapter_request: Prompt Adapter request to use
for generation, if any.
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved

Yields:
Expand Down Expand Up @@ -1022,15 +1022,15 @@ def remove_logger(self, logger_name: str) -> None:
async def start_profile(self) -> None:
# using type instead of isinstance to check to avoid capturing
# inherited classes
if type(self.engine.model_executor) == GPUExecutorAsync:
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved
if type(self.engine.model_executor) == GPUExecutorAsync: # noqa: E721
self.engine.model_executor.start_profile()
else:
self.engine.model_executor._run_workers("start_profile")

async def stop_profile(self) -> None:
# using type instead of isinstance to check to avoid capturing
# inherited classes
if type(self.engine.model_executor) == GPUExecutorAsync:
if type(self.engine.model_executor) == GPUExecutorAsync: # noqa: E721
self.engine.model_executor.stop_profile()
else:
self.engine.model_executor._run_workers("stop_profile")
6 changes: 3 additions & 3 deletions vllm/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,7 +144,7 @@ class LLMEngine:
decoding.
executor_class: The model executor class for managing distributed
execution.
prompt_adapter_config (Optional): The configuration related to serving
prompt_adapter_config (Optional): The configuration related to serving
prompt adapters.
log_stats: Whether to log statistics.
usage_context: Specified entry point, used for usage info collection.
Expand Down Expand Up @@ -1600,15 +1600,15 @@ def check_health(self) -> None:
def start_profile(self) -> None:
# using type instead of isinstance to check to avoid capturing
# inherited classes (MultiprocessingGPUExecutor)
if type(self.model_executor) == GPUExecutor:
if type(self.model_executor) == GPUExecutor: # noqa: E721
self.model_executor.start_profile()
else:
self.model_executor._run_workers("start_profile")

def stop_profile(self) -> None:
# using type instead of isinstance to check to avoid capturing
# inherited classes (MultiprocessingGPUExecutor)
if type(self.model_executor) == GPUExecutor:
if type(self.model_executor) == GPUExecutor: # noqa: E721
self.model_executor.stop_profile()
else:
self.model_executor._run_workers("stop_profile")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -67,9 +67,9 @@ def __call__(self, input_ids: List[int],
instruction = self._guide.get_next_instruction(
state=self._fsm_state[seq_id])

if type(instruction) == Generate:
if type(instruction) == Generate: # noqa: E721
allowed_tokens = instruction.tokens
elif type(instruction) == Write:
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved
elif type(instruction) == Write: # noqa: E721
# TODO: support fast forward tokens
allowed_tokens = [instruction.tokens[0]]
else:
Expand Down
6 changes: 3 additions & 3 deletions vllm/model_executor/layers/quantization/awq_marlin.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,9 +110,9 @@ def get_scaled_act_names(self) -> List[str]:
def is_awq_marlin_compatible(cls, quant_config: Dict[str, Any]):
# Extract data from quant config.
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits", None)
group_size = quant_config.get("group_size", None)
has_zp = quant_config.get("zero_point", None)
num_bits = quant_config.get("bits")
group_size = quant_config.get("group_size")
has_zp = quant_config.get("zero_point")

if quant_method != "awq":
return False
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, cast

import torch
from pydantic import BaseModel
Expand Down Expand Up @@ -79,8 +79,8 @@ def get_quant_method(
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "CompressedTensorsConfig":
target_scheme_map: Dict[str, Any] = dict()
ignore: List[str] = config.get("ignore", None)
quant_format: str = config.get("format", None)
ignore = cast(List[str], config.get("ignore"))
quant_format = cast(str, config.get("format"))

# The quant_config has multiple config_groups, each containing
# an input_activations key with details about how the activations are
Expand Down Expand Up @@ -200,7 +200,7 @@ def _is_fp8_w8a16(self, weight_quant: BaseModel,
is_per_tensor_or_channel_weight = (weight_quant.strategy in [
QuantizationStrategy.TENSOR, QuantizationStrategy.CHANNEL
])
if not (is_symmetric_weight and is_static_weight
if not (is_symmetric_weight and is_static_weight # noqa: SIM103
and is_per_tensor_or_channel_weight):
return False

Expand Down Expand Up @@ -333,7 +333,7 @@ def create_weights(self, layer: torch.nn.Module,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
"""
Use the CompressedTensorsScheme associated with each layer to create
Use the CompressedTensorsScheme associated with each layer to create
the necessary parameters for the layer. See LinearMethodBase for param
details
"""
Expand All @@ -352,8 +352,8 @@ def apply(self,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None):
"""
Use the output of create_weights and the CompressedTensorsScheme
associated with the layer to apply the forward pass with the
Use the output of create_weights and the CompressedTensorsScheme
associated with the layer to apply the forward pass with the
layer input. See LinearMethodBase for param details

"""
Expand Down
8 changes: 4 additions & 4 deletions vllm/model_executor/layers/quantization/gptq_marlin.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,10 +132,10 @@ def get_scaled_act_names(self) -> List[str]:
def is_gptq_marlin_compatible(cls, quant_config: Dict[str, Any]):
# Extract data from quant config.
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits", None)
group_size = quant_config.get("group_size", None)
sym = quant_config.get("sym", None)
desc_act = quant_config.get("desc_act", None)
num_bits = quant_config.get("bits")
group_size = quant_config.get("group_size")
sym = quant_config.get("sym")
desc_act = quant_config.get("desc_act")

if quant_method != "gptq":
return False
Expand Down
4 changes: 1 addition & 3 deletions vllm/model_executor/model_loader/tensorizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -408,9 +408,7 @@ def is_vllm_tensorized(tensorizer_config: "TensorizerConfig") -> bool:
"inferred as vLLM models, so setting vllm_tensorized=True is "
"only necessary for models serialized prior to this change.")
return True
if (".vllm_tensorized_marker" in deserializer):
return True
return False
return ".vllm_tensorized_marker" in deserializer


def serialize_vllm_model(
Expand Down
2 changes: 1 addition & 1 deletion vllm/model_executor/models/minicpmv.py
Original file line number Diff line number Diff line change
Expand Up @@ -884,7 +884,7 @@ def __new__(
version = str(config.version).split(".")
version = tuple([int(x) for x in version])
# Dispatch class based on version
instance_class = _SUPPORT_VERSION.get(version, None)
instance_class = _SUPPORT_VERSION.get(version)
if instance_class is None:
raise ValueError(
"Currently, MiniCPMV only supports versions 2.0, 2.5, and 2.6")
Expand Down
5 changes: 1 addition & 4 deletions vllm/spec_decode/draft_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,10 +183,7 @@ def supports_gpu_multi_step(self, execute_model_req: ExecuteModelRequest):
return False

# TODO: Add soft-tuning prompt adapter support
if self.prompt_adapter_config:
return False

return True
return not self.prompt_adapter_config

@torch.inference_mode()
def execute_model(
Expand Down
7 changes: 2 additions & 5 deletions vllm/spec_decode/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,13 +104,10 @@ def _should_collect_rejsample_metrics(self, now: float) -> bool:
if self._rank != 0:
return False

if (now - self._last_metrics_collect_time <
self._rejsample_metrics_collect_interval_s):
return False
return True
return now - self._last_metrics_collect_time >= self._rejsample_metrics_collect_interval_s # noqa: E501

def _copy_rejsample_metrics_async(self) -> torch.cuda.Event:
"""Copy rejection/typical-acceptance sampling metrics
"""Copy rejection/typical-acceptance sampling metrics
(number of accepted tokens, etc) to CPU asynchronously.

Returns a CUDA event recording when the copy is complete.
Expand Down
Loading
Loading