Skip to content
/ iCAN Public

[BMVC 2018] iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

License

Notifications You must be signed in to change notification settings

vt-vl-lab/iCAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository is no longer maintained. I am no longer actively maintaining iCAN. Please refer to our ECCV 2020 work DRG for a stronger HOI detection framework in PyTorch.

iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

Official TensorFlow implementation for iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection.

See the project page for more details. Please contact Chen Gao ([email protected]) if you have any questions.

Prerequisites

This codebase was developed and tested with Python2.7, Tensorflow 1.1.0 or 1.2.0, CUDA 8.0 and Ubuntu 16.04.

Installation

  1. Clone the repository.
    git clone https://github.com/vt-vl-lab/iCAN.git
  2. Download V-COCO and HICO-DET dataset. Setup V-COCO and COCO API. Setup HICO-DET evaluation code.
    chmod +x ./misc/download_dataset.sh 
    ./misc/download_dataset.sh 
    
    # Assume you cloned the repository to `iCAN_DIR'.
    # If you have downloaded V-COCO or HICO-DET dataset somewhere else, you can create a symlink
    # ln -s /path/to/your/v-coco/folder Data/
    # ln -s /path/to/your/hico-det/folder Data/

Evaluate V-COCO and HICO-DET detection results

  1. Download detection results
    chmod +x ./misc/download_detection_results.sh 
    ./misc/download_detection_results.sh
  2. Evaluate V-COCO detection results using iCAN
    python tools/Diagnose_VCOCO.py eval Results/300000_iCAN_ResNet50_VCOCO.pkl
  3. Evaluate V-COCO detection results using iCAN (Early fusion)
    python tools/Diagnose_VCOCO.py eval Results/300000_iCAN_ResNet50_VCOCO_Early.pkl
  4. Evaluate HICO-DET detection results using iCAN
    cd Data/ho-rcnn
    matlab -r "Generate_detection; quit"
    cd ../../
    Here we evaluate our best detection results under Results/HICO_DET/1800000_iCAN_ResNet50_HICO. If you want to evaluate a different detection result, please specify the filename in Data/ho-rcnn/Generate_detection.m accordingly.

Error diagnose on V-COCO

  1. Diagnose V-COCO detection results using iCAN
    python tools/Diagnose_VCOCO.py diagnose Results/300000_iCAN_ResNet50_VCOCO.pkl
  2. Diagnose V-COCO detection results using iCAN (Early fusion)
    python tools/Diagnose_VCOCO.py diagnose Results/300000_iCAN_ResNet50_VCOCO_Early.pkl

Training

  1. Download COCO pre-trained weights and training data
    chmod +x ./misc/download_training_data.sh 
    ./misc/download_training_data.sh
  2. Train an iCAN on V-COCO
    python tools/Train_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO --num_iteration 300000
  3. Train an iCAN (Early fusion) on V-COCO
    python tools/Train_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO_Early --num_iteration 300000
  4. Train an iCAN on HICO-DET
    python tools/Train_ResNet_HICO.py --num_iteration 1800000

Testing

  1. Test an iCAN on V-COCO
     python tools/Test_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO --num_iteration 300000
  2. Test an iCAN (Early fusion) on V-COCO
     python tools/Test_ResNet_VCOCO.py --model iCAN_ResNet50_VCOCO_Early --num_iteration 300000
  3. Test an iCAN on HICO-DET
    python tools/Test_ResNet_HICO.py --num_iteration 1800000

Visualizing V-COCO detections

Check tools/Visualization.ipynb to see how to visualize the detection results.

Demo/Test on your own images

  1. To get the best performance, we use Detectron as our object detector. For a simple demo purpose, we use tf-faster-rcnn in this section instead.
  2. Clone and setup the tf-faster-rcnn repository.
    cd $iCAN_DIR
    chmod +x ./misc/setup_demo.sh 
    ./misc/setup_demo.sh
  3. Put your own images to demo/ folder.
  4. Detect all objects
    # images are saved in $iCAN_DIR/demo/
    python ../tf-faster-rcnn/tools/Object_Detector.py --img_dir demo/ --img_format png --Demo_RCNN demo/Object_Detection.pkl
  5. Detect all HOIs
    python tools/Demo.py --img_dir demo/ --Demo_RCNN demo/Object_Detection.pkl --HOI_Detection demo/HOI_Detection.pkl
  6. Check tools/Demo.ipynb to visualize the detection results.

Citation

If you find this code useful for your research, please consider citing the following papers:

@inproceedings{gao2018ican,
author    = {Gao, Chen and Zou, Yuliang and Huang, Jia-Bin}, 
title     = {iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection}, 
booktitle = {British Machine Vision Conference},
year      = {2018}
}

Acknowledgement

Codes are built upon tf-faster-rcnn. We thank Jinwoo Choi for the code review.

About

[BMVC 2018] iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published