Skip to content

Commit

Permalink
support gpu transform (#19)
Browse files Browse the repository at this point in the history
  • Loading branch information
wbo4958 committed Jun 26, 2024
1 parent 588e577 commit f1df971
Show file tree
Hide file tree
Showing 16 changed files with 316 additions and 127 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -43,15 +43,15 @@ public void close() {
}
}

public Table slice(int index) {
public Table select(int index) {
if (index < 0) {
return null;
}
return slice(Arrays.asList(index));
return select(Arrays.asList(index));
}

/** Slice the columns indicated by indices into a Table*/
public Table slice(List<Integer> indices) {
public Table select(List<Integer> indices) {
if (indices == null || indices.size() == 0) {
return null;
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,16 +17,22 @@
package ml.dmlc.xgboost4j.scala.spark

import scala.collection.mutable.ArrayBuffer
import scala.jdk.CollectionConverters.seqAsJavaListConverter
import scala.jdk.CollectionConverters.{asScalaIteratorConverter, seqAsJavaListConverter}

import ai.rapids.cudf.Table
import com.nvidia.spark.rapids.ColumnarRdd
import com.nvidia.spark.rapids.{ColumnarRdd, GpuColumnVectorUtils}
import org.apache.commons.logging.LogFactory
import org.apache.spark.TaskContext
import org.apache.spark.ml.functions.array_to_vector
import org.apache.spark.ml.param.Param
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Column, Dataset}
import org.apache.spark.sql.{Column, DataFrame, Dataset, Row}
import org.apache.spark.sql.catalyst.{CatalystTypeConverters, InternalRow}
import org.apache.spark.sql.catalyst.expressions.UnsafeProjection
import org.apache.spark.sql.vectorized.ColumnarBatch

import ml.dmlc.xgboost4j.java.{CudfColumnBatch, GpuColumnBatch}
import ml.dmlc.xgboost4j.scala.QuantileDMatrix
import ml.dmlc.xgboost4j.scala.{DMatrix, QuantileDMatrix}
import ml.dmlc.xgboost4j.scala.spark.params.HasGroupCol

/**
Expand All @@ -35,6 +41,8 @@ import ml.dmlc.xgboost4j.scala.spark.params.HasGroupCol
*/
class GpuXGBoostPlugin extends XGBoostPlugin {

private val logger = LogFactory.getLog("XGBoostSparkGpuPlugin")

/**
* Whether the plugin is enabled or not, if not enabled, fallback
* to the regular CPU pipeline
Expand Down Expand Up @@ -115,10 +123,10 @@ class GpuXGBoostPlugin extends XGBoostPlugin {
val colBatchIter = iter.map { table =>
withResource(new GpuColumnBatch(table, null)) { batch =>
new CudfColumnBatch(
batch.slice(indices.featureIds.get.map(Integer.valueOf).asJava),
batch.slice(indices.labelId),
batch.slice(indices.weightId.getOrElse(-1)),
batch.slice(indices.marginId.getOrElse(-1)));
batch.select(indices.featureIds.get.map(Integer.valueOf).asJava),
batch.select(indices.labelId),
batch.select(indices.weightId.getOrElse(-1)),
batch.select(indices.marginId.getOrElse(-1)));
}
}
new QuantileDMatrix(colBatchIter, missing, maxBin, nthread)
Expand Down Expand Up @@ -150,4 +158,124 @@ class GpuXGBoostPlugin extends XGBoostPlugin {
}
}


override def transform[M <: XGBoostModel[M]](model: XGBoostModel[M],
dataset: Dataset[_]): DataFrame = {
val sc = dataset.sparkSession.sparkContext

val (transformedSchema, pred) = model.preprocess(dataset)
val bBooster = sc.broadcast(model.nativeBooster)
val bOriginalSchema = sc.broadcast(dataset.schema)

val featureIds = model.getFeaturesCols.distinct.map(dataset.schema.fieldIndex).toList
val isLocal = sc.isLocal
val missing = model.getMissing
val nThread = model.getNthread

val rdd = ColumnarRdd(dataset.asInstanceOf[DataFrame]).mapPartitions { tableIters =>
// booster is visible for all spark tasks in the same executor
val booster = bBooster.value
val originalSchema = bOriginalSchema.value

// UnsafeProjection is not serializable so do it on the executor side
val toUnsafe = UnsafeProjection.create(originalSchema)

synchronized {
val device = booster.getAttr("device")
if (device != null && device.trim.isEmpty) {
booster.setAttr("device", "cuda")
val gpuId = if (!isLocal) XGBoost.getGPUAddrFromResources else 0
booster.setParam("device", s"cuda:$gpuId")
logger.info("GPU transform on GPU device: " + gpuId)
}
}

// Iterator on Row
new Iterator[Row] {
// Convert InternalRow to Row
private val converter: InternalRow => Row = CatalystTypeConverters
.createToScalaConverter(originalSchema)
.asInstanceOf[InternalRow => Row]

// GPU batches read in must be closed by the receiver
@transient var currentBatch: ColumnarBatch = null

// Iterator on Row
var iter: Iterator[Row] = null

TaskContext.get().addTaskCompletionListener[Unit](_ => {
closeCurrentBatch() // close the last ColumnarBatch
})

private def closeCurrentBatch(): Unit = {
if (currentBatch != null) {
currentBatch.close()
currentBatch = null
}
}

def loadNextBatch(): Unit = {
closeCurrentBatch()
if (tableIters.hasNext) {
val dataTypes = originalSchema.fields.map(x => x.dataType)
iter = withResource(tableIters.next()) { table =>
val gpuColumnBatch = new GpuColumnBatch(table, originalSchema)
// Create DMatrix
val featureTable = gpuColumnBatch.select(featureIds.map(Integer.valueOf).asJava)
if (featureTable == null) {
throw new RuntimeException("Something wrong for feature indices")
}
try {
val cudfColumnBatch = new CudfColumnBatch(featureTable, null, null, null)
val dm = new DMatrix(cudfColumnBatch, missing, nThread)
if (dm == null) {
Iterator.empty
} else {
try {
currentBatch = new ColumnarBatch(
GpuColumnVectorUtils.extractHostColumns(table, dataTypes),
table.getRowCount().toInt)
val rowIterator = currentBatch.rowIterator().asScala.map(toUnsafe)
.map(converter(_))
model.predictInternal(booster, dm, pred, rowIterator).toIterator
} finally {
dm.delete()
}
}
} finally {
featureTable.close()
}
}
} else {
iter = null
}
}

override def hasNext: Boolean = {
val itHasNext = iter != null && iter.hasNext
if (!itHasNext) { // Don't have extra Row for current ColumnarBatch
loadNextBatch()
iter != null && iter.hasNext
} else {
itHasNext
}
}

override def next(): Row = {
if (iter == null || !iter.hasNext) {
loadNextBatch()
}
if (iter == null) {
throw new NoSuchElementException()
}
iter.next()
}
}
}
bBooster.unpersist(false)
bOriginalSchema.unpersist(false)

val output = dataset.sparkSession.createDataFrame(rdd, transformedSchema)
model.postTransform(output, pred).toDF()
}
}
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
Copyright (c) 2021-2023 by Contributors
Copyright (c) 2021-2024 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Expand Down
Original file line number Diff line number Diff line change
@@ -1,14 +1,33 @@
/*
Copyright (c) 2024 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package ml.dmlc.xgboost4j.scala.spark

import java.io.File

import scala.collection.mutable.ArrayBuffer

import ai.rapids.cudf.{CSVOptions, DType, Schema, Table}
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{FloatType, StructField, StructType}

import ml.dmlc.xgboost4j.scala.rapids.spark.GpuTestSuite

class GpuXGBoostPluginSuite extends GpuTestSuite {


test("isEnabled") {
def checkIsEnabled(spark: SparkSession, expected: Boolean): Unit = {
import spark.implicits._
Expand Down Expand Up @@ -37,7 +56,7 @@ class GpuXGBoostPluginSuite extends GpuTestSuite {
(2.0f, 3.0f, 2.0f, 3.0f, 1.0f, 0.1f),
(3.0f, 4.0f, 5.0f, 6.0f, 0.0f, 0.1f),
(4.0f, 5.0f, 6.0f, 7.0f, 0.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 0.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 0.0f, 0.1f)
).toDF("c1", "c2", "weight", "margin", "label", "other")
val classifier = new XGBoostClassifier()

Expand All @@ -64,7 +83,7 @@ class GpuXGBoostPluginSuite extends GpuTestSuite {
(2.0f, 3.0f, 2.0f, 3.0f, 1.0f, 0.1f),
(3.0f, 4.0f, 5.0f, 6.0f, 0.0f, 0.1f),
(4.0f, 5.0f, 6.0f, 7.0f, 0.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 0.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 0.0f, 0.1f)
).toDF("c1", "c2", "weight", "margin", "label", "other")
.repartition(5)

Expand Down Expand Up @@ -114,7 +133,7 @@ class GpuXGBoostPluginSuite extends GpuTestSuite {
(2.0f, 3.0f, 2.0f, 3.0f, 1.0f, 0.1f),
(3.0f, data, 5.0f, 6.0f, 0.0f, 0.1f),
(4.0f, 5.0f, 6.0f, 7.0f, 0.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 1.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 1.0f, 0.1f)
).toDF("c1", "c2", "weight", "margin", "label", "other")

val features = Array("c1", "c2")
Expand Down Expand Up @@ -168,7 +187,7 @@ class GpuXGBoostPluginSuite extends GpuTestSuite {

val train = Seq(
(1.0f, 2.0f, 1.0f, 2.0f, 0.0f, 0.0f),
(2.0f, 3.0f, 2.0f, 3.0f, 1.0f, 0.1f),
(2.0f, 3.0f, 2.0f, 3.0f, 1.0f, 0.1f)
).toDF("c1", "c2", "weight", "margin", "label", "other")

// dataPoint -> (missing, rowNum, nonMissing)
Expand All @@ -179,7 +198,7 @@ class GpuXGBoostPluginSuite extends GpuTestSuite {
(2.0f, 3.0f, 2.0f, 3.0f, 1.0f, 0.1f),
(3.0f, data, 5.0f, 6.0f, 0.0f, 0.1f),
(4.0f, 5.0f, 6.0f, 7.0f, 0.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 1.0f, 0.1f),
(5.0f, 6.0f, 7.0f, 8.0f, 1.0f, 0.1f)
).toDF("c1", "c2", "weight", "margin", "label", "other")

val features = Array("c1", "c2")
Expand Down Expand Up @@ -226,4 +245,19 @@ class GpuXGBoostPluginSuite extends GpuTestSuite {
}
}
}


test("XGBoost-Spark should match xgboost4j") {
withGpuSparkSession() { spark =>

val cols = Array("c0", "c1", "c2", "c3", "c4", "c5")
val label = "label"

val table = Table.readParquet(new File(getResourcePath("/binary.train.parquet")))
val df = spark.read.parquet(getResourcePath("/binary.train.parquet"))


df.show()
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@

package ml.dmlc.xgboost4j.scala.spark

import org.apache.spark.sql.functions.lit
import org.scalatest.funsuite.AnyFunSuite

import ml.dmlc.xgboost4j.scala.rapids.spark.GpuTestSuite
Expand All @@ -41,53 +40,55 @@ class XXXXXSuite extends AnyFunSuite with GpuTestSuite {

var Array(trainDf, validationDf) = df.randomSplit(Array(0.8, 0.2), seed = 1)

// trainDf = trainDf.withColumn("validation", lit(false))
// validationDf = validationDf.withColumn("validationDf", lit(true))
// trainDf = trainDf.withColumn("validation", lit(false))
// validationDf = validationDf.withColumn("validationDf", lit(true))

// df = trainDf.union(validationDf)
//
// // Assemble the feature columns into a single vector column
// val assembler = new VectorAssembler()
// .setInputCols(features)
// .setOutputCol("features")
// val dataset = assembler.transform(df)
// df = trainDf.union(validationDf)
//
// // Assemble the feature columns into a single vector column
// val assembler = new VectorAssembler()
// .setInputCols(features)
// .setOutputCol("features")
// val dataset = assembler.transform(df)

// val arrayInput = df.select(array(features.map(col(_)): _*).as("features"),
// col("label"), col("base_margin"))

val est = new XGBoostClassifier()
.setNumWorkers(1)
.setNumRound(2)
.setMaxDepth(3)
.setNumRound(100)
// .setMaxDepth(3)
// .setWeightCol("weight")
// .setBaseMarginCol("base_margin")
.setFeaturesCol(features)
.setLabelCol(labelCol)
.setLeafPredictionCol("leaf")
.setContribPredictionCol("contrib")
.setDevice("cuda")
.setEvalDataset(validationDf)
// .setValidationIndicatorCol("validation")
// .setPredictionCol("")
.setRawPredictionCol("")
.setProbabilityCol("xxxx")
// .setEvalDataset(validationDf)
// .setValidationIndicatorCol("validation")
// .setPredictionCol("")
// .setRawPredictionCol("")
// .setProbabilityCol("xxxx")
// .setContribPredictionCol("contrb")
// .setLeafPredictionCol("leaf")
// val est = new XGBoostClassifier().setLabelCol(labelCol)
// est.fit(arrayInput)
est.write.overwrite().save("/tmp/abcdef")
val loadedEst = XGBoostClassifier.load("/tmp/abcdef")
println(loadedEst.getNumRound)
println(loadedEst.getMaxDepth)
// est.write.overwrite().save("/tmp/abcdef")
// val loadedEst = XGBoostClassifier.load("/tmp/abcdef")
// println(loadedEst.getNumRound)
// println(loadedEst.getMaxDepth)

val model = est.fit(trainDf)
println("-----------------------")
println(model.getNumRound)
println(model.getMaxDepth)

// model.write.overwrite().save("/tmp/model/")
// val loadedModel = XGBoostClassificationModel.load("/tmp/model")
// println(loadedModel.getNumRound)
// println(loadedModel.getMaxDepth)
// model.transform(df).drop(features: _*).show(150, false)

val out = model.transform(df)
out.printSchema()
out.show(150, false)
// model.write.overwrite().save("/tmp/model/")
// val loadedModel = XGBoostClassificationModel.load("/tmp/model")
// println(loadedModel.getNumRound)
// println(loadedModel.getMaxDepth)
// model.transform(df).drop(features: _*).show(150, false)
}

}
Expand Down
Loading

0 comments on commit f1df971

Please sign in to comment.