Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for nomic-ai/nomic-embed-text-v1.5 model #96

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .github/workflows/main.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -133,13 +133,18 @@ jobs:
- model_name: Snowflake/snowflake-arctic-embed-m-v1.5
model_tag_name: snowflake-snowflake-arctic-embed-m-v1.5
onnx_runtime: true
- model_name: nomic-ai/nomic-embed-text-v1.5
model_tag_name: nomic-ai-nomic-embed-text-v1.5
use_sentence_transformers_vectorizer: true
trust_remote_code: true
env:
LOCAL_REPO: transformers-inference
REMOTE_REPO: semitechnologies/transformers-inference
MODEL_NAME: ${{matrix.model_name}}
MODEL_TAG_NAME: ${{matrix.model_tag_name}}
ONNX_RUNTIME: ${{matrix.onnx_runtime}}
USE_SENTENCE_TRANSFORMERS_VECTORIZER: ${{matrix.use_sentence_transformers_vectorizer}}
TRUST_REMOTE_CODE: ${{matrix.trust_remote_code}}
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
Expand Down
2 changes: 2 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ ARG TARGETARCH
ARG MODEL_NAME
ARG ONNX_RUNTIME
ENV ONNX_CPU=${TARGETARCH}
ARG TRUST_REMOTE_CODE
ARG USE_SENTENCE_TRANSFORMERS_VECTORIZER
RUN mkdir nltk_data
COPY download.py .
RUN ./download.py
Expand Down
24 changes: 20 additions & 4 deletions app.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
import os
from logging import getLogger
from fastapi import FastAPI, Response, status
from typing import Union
from config import TRUST_REMOTE_CODE
from vectorizer import Vectorizer, VectorInput
from meta import Meta

Expand Down Expand Up @@ -55,7 +57,7 @@ def startup_event():

model_dir = "./models/model"

def get_model_directory() -> (str, bool):
def get_model_name() -> Union[str, bool]:
if os.path.exists(f"{model_dir}/model_name"):
with open(f"{model_dir}/model_name", "r") as f:
model_name = f.read()
Expand All @@ -70,6 +72,13 @@ def get_onnx_runtime() -> bool:
return onnx_runtime == "true"
return False

def get_trust_remote_code() -> bool:
if os.path.exists(f"{model_dir}/trust_remote_code"):
with open(f"{model_dir}/trust_remote_code", "r") as f:
trust_remote_code = f.read()
return trust_remote_code == "true"
return TRUST_REMOTE_CODE

def log_info_about_onnx(onnx_runtime: bool):
if onnx_runtime:
onnx_quantization_info = "missing"
Expand All @@ -80,11 +89,17 @@ def log_info_about_onnx(onnx_runtime: bool):
f"Running ONNX vectorizer with quantized model for {onnx_quantization_info}"
)

model_name, use_sentence_transformer_vectorizer = get_model_directory()
model_name, use_sentence_transformer_vectorizer = get_model_name()
onnx_runtime = get_onnx_runtime()
trust_remote_code = get_trust_remote_code()
log_info_about_onnx(onnx_runtime)

meta_config = Meta(model_dir, model_name, use_sentence_transformer_vectorizer)
meta_config = Meta(
model_dir,
model_name,
use_sentence_transformer_vectorizer,
trust_remote_code,
)
vec = Vectorizer(
model_dir,
cuda_support,
Expand All @@ -96,6 +111,7 @@ def log_info_about_onnx(onnx_runtime: bool):
onnx_runtime,
use_sentence_transformer_vectorizer,
model_name,
trust_remote_code,
)


Expand All @@ -112,7 +128,7 @@ def meta():

@app.post("/vectors")
@app.post("/vectors/")
async def read_item(item: VectorInput, response: Response):
async def vectorize(item: VectorInput, response: Response):
try:
vector = await vec.vectorize(item.text, item.config)
return {"text": item.text, "vector": vector.tolist(), "dim": len(vector)}
Expand Down
4 changes: 4 additions & 0 deletions cicd/build.sh
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,12 @@ set -eou pipefail
local_repo=${LOCAL_REPO?Variable LOCAL_REPO is required}
model_name=${MODEL_NAME?Variable MODEL_NAME is required}
onnx_runtime=${ONNX_RUNTIME?Variable ONNX_RUNTIME is required}
trust_remote_code=${TRUST_REMOTE_CODE:-false}
use_sentence_transformers_vectorizer=${USE_SENTENCE_TRANSFORMERS_VECTORIZER:-false}

docker build \
--build-arg "MODEL_NAME=$model_name" \
--build-arg "ONNX_RUNTIME=$onnx_runtime" \
--build-arg "TRUST_REMOTE_CODE=$trust_remote_code" \
--build-arg "USE_SENTENCE_TRANSFORMERS_VECTORIZER=$use_sentence_transformers_vectorizer" \
-t "$local_repo" .
5 changes: 5 additions & 0 deletions cicd/docker_push.sh
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@ model_name=${MODEL_NAME?Variable MODEL_NAME is required}
docker_username=${DOCKER_USERNAME?Variable DOCKER_USERNAME is required}
docker_password=${DOCKER_PASSWORD?Variable DOCKER_PASSWORD is required}
onnx_runtime=${ONNX_RUNTIME?Variable ONNX_RUNTIME is required}
trust_remote_code=${TRUST_REMOTE_CODE:-false}
use_sentence_transformers_vectorizer=${USE_SENTENCE_TRANSFORMERS_VECTORIZER:-false}
original_model_name=$model_name
git_tag=$GITHUB_REF_NAME

Expand All @@ -16,6 +18,7 @@ function main() {
echo "git ref name is $GITHUB_REF_NAME"
echo "git tag is $git_tag"
echo "onnx_runtime is $onnx_runtime"
echo "trust_remote_code is $trust_remote_code"
push_tag
}

Expand Down Expand Up @@ -46,6 +49,8 @@ function push_tag() {
docker buildx build --platform=linux/arm64,linux/amd64 \
--build-arg "MODEL_NAME=$original_model_name" \
--build-arg "ONNX_RUNTIME=$onnx_runtime" \
--build-arg "TRUST_REMOTE_CODE=$trust_remote_code" \
--build-arg "USE_SENTENCE_TRANSFORMERS_VECTORIZER=$use_sentence_transformers_vectorizer" \
--push \
--tag "$tag_git" \
--tag "$tag_latest" \
Expand Down
23 changes: 20 additions & 3 deletions download.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import os
import sys
import nltk
import json
from transformers import (
AutoModel,
AutoTokenizer,
Expand Down Expand Up @@ -98,6 +99,18 @@ def quantization_config(onnx_cpu_arch: str):


def download_model(model_name: str, model_dir: str, trust_remote_code: bool = False):
def save_model_name(model_name: str):
with open(f"{model_dir}/model_name", "w") as f:
f.write(model_name)

def save_trust_remote_code(trust_remote_code: bool):
with open(f"{model_dir}/trust_remote_code", "w") as f:
f.write(f"{trust_remote_code}")

def save_model_config(model_config):
with open(f"{model_dir}/model_config", "w") as f:
f.write(json.dumps(model_config))

print(
f"Downloading model {model_name} from huggingface model hub ({trust_remote_code=})"
)
Expand All @@ -107,9 +120,11 @@ def download_model(model_name: str, model_dir: str, trust_remote_code: bool = Fa
if (
model_type is not None and model_type == "t5"
) or use_sentence_transformers_vectorizer.lower() == "true":
SentenceTransformer(model_name, cache_folder=model_dir)
with open(f"{model_dir}/model_name", "w") as f:
f.write(model_name)
SentenceTransformer(
model_name, cache_folder=model_dir, trust_remote_code=trust_remote_code
)
save_model_name(model_name)
save_model_config(config.to_dict())
else:
if config.architectures and not force_automodel:
print(f"Using class {config.architectures[0]} to load model weights")
Expand All @@ -136,6 +151,8 @@ def download_model(model_name: str, model_dir: str, trust_remote_code: bool = Fa
model.save_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)

save_trust_remote_code(trust_remote_code)

nltk.download("punkt", download_dir=nltk_dir)
nltk.download("punkt_tab", download_dir=nltk_dir)

Expand Down
15 changes: 9 additions & 6 deletions meta.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,25 @@
import json
import os
from transformers import AutoConfig

from config import TRUST_REMOTE_CODE


class Meta:
config: AutoConfig

def __init__(
self,
model_path: str,
model_name: str,
use_sentence_transformer_vectorizer: bool,
trust_remote_code: bool,
):
if use_sentence_transformer_vectorizer:
self.config = {"model_name": model_name, "model_type": None}
if os.path.exists(f"{model_path}/model_config"):
with open(f"{model_path}/model_config", "r") as f:
self.config = json.loads(f.read())
else:
self.config = {"model_name": model_name, "model_type": None}
else:
self.config = AutoConfig.from_pretrained(
model_path, trust_remote_code=TRUST_REMOTE_CODE
model_path, trust_remote_code=trust_remote_code
).to_dict()

def get(self):
Expand Down
10 changes: 8 additions & 2 deletions smoke_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,15 @@ def test_meta(self):
self.assertIsInstance(res.json(), dict)

def test_vectorizing(self):
def try_to_vectorize(url):
print(f"url: {url}")
def get_req_body(task_type: str = ""):
req_body = {"text": "The London Eye is a ferris wheel at the River Thames."}
if task_type != "":
req_body["config"] = {"task_type": task_type}
return req_body

def try_to_vectorize(url, task_type: str = ""):
print(f"url: {url}")
req_body = get_req_body(task_type)

res = requests.post(url, json=req_body)
resBody = res.json()
Expand Down
Loading
Loading