forked from opensearch-project/neural-search
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: will-hwang <[email protected]>
- Loading branch information
1 parent
2ecd32c
commit eb2cb20
Showing
4 changed files
with
274 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
117 changes: 117 additions & 0 deletions
117
...tart-upgrade/src/test/java/org/opensearch/neuralsearch/bwc/HybridSearchWithRescoreIT.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
package org.opensearch.neuralsearch.bwc; | ||
|
||
import java.nio.file.Files; | ||
import java.nio.file.Path; | ||
import java.util.Arrays; | ||
import java.util.List; | ||
import java.util.Map; | ||
import java.util.Objects; | ||
|
||
import static org.opensearch.neuralsearch.util.TestUtils.DEFAULT_COMBINATION_METHOD; | ||
import static org.opensearch.neuralsearch.util.TestUtils.DEFAULT_NORMALIZATION_METHOD; | ||
import static org.opensearch.neuralsearch.util.TestUtils.NODES_BWC_CLUSTER; | ||
import static org.opensearch.neuralsearch.util.TestUtils.PARAM_NAME_WEIGHTS; | ||
import static org.opensearch.neuralsearch.util.TestUtils.TEXT_EMBEDDING_PROCESSOR; | ||
import static org.opensearch.neuralsearch.util.TestUtils.getModelId; | ||
|
||
import org.opensearch.index.query.MatchQueryBuilder; | ||
import org.opensearch.index.query.QueryBuilder; | ||
import org.opensearch.index.query.QueryBuilders; | ||
import org.opensearch.knn.index.query.rescore.RescoreContext; | ||
import org.opensearch.neuralsearch.query.HybridQueryBuilder; | ||
import org.opensearch.neuralsearch.query.NeuralQueryBuilder; | ||
|
||
public class HybridSearchWithRescoreIT extends AbstractRestartUpgradeRestTestCase { | ||
private static final String PIPELINE_NAME = "nlp-hybrid-with-rescore-pipeline"; | ||
private static final String SEARCH_PIPELINE_NAME = "nlp-search-with_rescore-pipeline"; | ||
private static final String TEST_FIELD = "passage_text"; | ||
private static final String TEXT = "Hello world"; | ||
private static final String TEXT_UPGRADED = "Hi earth"; | ||
private static final String QUERY = "Hi world"; | ||
private static final int NUM_DOCS_PER_ROUND = 1; | ||
private static final String VECTOR_EMBEDDING_FIELD = "passage_embedding"; | ||
protected static final String RESCORE_QUERY = "hi"; | ||
|
||
/** | ||
* Test normalization with hybrid query and rescore. This test is required as rescore will not be compatible with version lower than 2.15 | ||
*/ | ||
public void testHybridQueryWithRescore_whenIndexWithMultipleShards_E2EFlow() throws Exception { | ||
waitForClusterHealthGreen(NODES_BWC_CLUSTER); | ||
|
||
if (isRunningAgainstOldCluster()) { | ||
String modelId = uploadTextEmbeddingModel(); | ||
loadModel(modelId); | ||
createPipelineProcessor(modelId, PIPELINE_NAME); | ||
createIndexWithConfiguration( | ||
getIndexNameForTest(), | ||
Files.readString(Path.of(classLoader.getResource("processor/IndexMappingMultipleShard.json").toURI())), | ||
PIPELINE_NAME | ||
); | ||
addDocument(getIndexNameForTest(), "0", TEST_FIELD, TEXT, null, null); | ||
createSearchPipeline( | ||
SEARCH_PIPELINE_NAME, | ||
DEFAULT_NORMALIZATION_METHOD, | ||
DEFAULT_COMBINATION_METHOD, | ||
Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.3f, 0.7f })) | ||
); | ||
} else { | ||
String modelId = null; | ||
try { | ||
modelId = getModelId(getIngestionPipeline(PIPELINE_NAME), TEXT_EMBEDDING_PROCESSOR); | ||
loadModel(modelId); | ||
addDocument(getIndexNameForTest(), "1", TEST_FIELD, TEXT_UPGRADED, null, null); | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
QueryBuilder rescorer = QueryBuilders.matchQuery(TEST_FIELD, RESCORE_QUERY).boost(0.3f); | ||
validateTestIndex(getIndexNameForTest(), hybridQueryBuilder, rescorer); | ||
hybridQueryBuilder = getQueryBuilder(modelId, Map.of("ef_search", 100), RescoreContext.getDefault()); | ||
validateTestIndex(getIndexNameForTest(), hybridQueryBuilder, rescorer); | ||
} finally { | ||
wipeOfTestResources(getIndexNameForTest(), PIPELINE_NAME, modelId, null); | ||
} | ||
} | ||
} | ||
|
||
private void validateTestIndex(final String index, HybridQueryBuilder queryBuilder, QueryBuilder rescorer) { | ||
int docCount = getDocCount(index); | ||
assertEquals(2, docCount); | ||
Map<String, Object> searchResponseAsMap = search(index, queryBuilder, rescorer, 1, Map.of("search_pipeline", SEARCH_PIPELINE_NAME)); | ||
assertNotNull(searchResponseAsMap); | ||
int hits = getHitCount(searchResponseAsMap); | ||
assertEquals(1, hits); | ||
List<Double> scoresList = getNormalizationScoreList(searchResponseAsMap); | ||
for (Double score : scoresList) { | ||
assertTrue(0 <= score && score <= 2); | ||
} | ||
} | ||
|
||
private HybridQueryBuilder getQueryBuilder( | ||
final String modelId, | ||
final Map<String, ?> methodParameters, | ||
final RescoreContext rescoreContextForNeuralQuery | ||
) { | ||
NeuralQueryBuilder neuralQueryBuilder = NeuralQueryBuilder.builder() | ||
.fieldName(VECTOR_EMBEDDING_FIELD) | ||
.modelId(modelId) | ||
.queryText(QUERY) | ||
.k(5) | ||
.build(); | ||
if (methodParameters != null) { | ||
neuralQueryBuilder.methodParameters(methodParameters); | ||
} | ||
if (Objects.nonNull(rescoreContextForNeuralQuery)) { | ||
neuralQueryBuilder.rescoreContext(rescoreContextForNeuralQuery); | ||
} | ||
|
||
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("text", QUERY); | ||
|
||
HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); | ||
hybridQueryBuilder.add(matchQueryBuilder); | ||
hybridQueryBuilder.add(neuralQueryBuilder); | ||
|
||
return hybridQueryBuilder; | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
151 changes: 151 additions & 0 deletions
151
...ling-upgrade/src/test/java/org/opensearch/neuralsearch/bwc/HybridSearchWithRescoreIT.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
package org.opensearch.neuralsearch.bwc; | ||
|
||
import org.opensearch.index.query.MatchQueryBuilder; | ||
import org.opensearch.index.query.QueryBuilder; | ||
import org.opensearch.index.query.QueryBuilders; | ||
import org.opensearch.knn.index.query.rescore.RescoreContext; | ||
import org.opensearch.neuralsearch.query.HybridQueryBuilder; | ||
import org.opensearch.neuralsearch.query.NeuralQueryBuilder; | ||
|
||
import java.nio.file.Files; | ||
import java.nio.file.Path; | ||
import java.util.Arrays; | ||
import java.util.List; | ||
import java.util.Map; | ||
import java.util.Objects; | ||
|
||
import static org.opensearch.neuralsearch.util.TestUtils.NODES_BWC_CLUSTER; | ||
import static org.opensearch.neuralsearch.util.TestUtils.PARAM_NAME_WEIGHTS; | ||
import static org.opensearch.neuralsearch.util.TestUtils.TEXT_EMBEDDING_PROCESSOR; | ||
import static org.opensearch.neuralsearch.util.TestUtils.DEFAULT_NORMALIZATION_METHOD; | ||
import static org.opensearch.neuralsearch.util.TestUtils.DEFAULT_COMBINATION_METHOD; | ||
import static org.opensearch.neuralsearch.util.TestUtils.getModelId; | ||
|
||
public class HybridSearchWithRescoreIT extends AbstractRollingUpgradeTestCase { | ||
|
||
private static final String PIPELINE_NAME = "nlp-hybrid-with-rescore-pipeline"; | ||
private static final String SEARCH_PIPELINE_NAME = "nlp-search-with_rescore-pipeline"; | ||
private static final String TEST_FIELD = "passage_text"; | ||
private static final String TEXT = "Hello world"; | ||
private static final String TEXT_MIXED = "Hi planet"; | ||
private static final String TEXT_UPGRADED = "Hi earth"; | ||
private static final String QUERY = "Hi world"; | ||
private static final int NUM_DOCS_PER_ROUND = 1; | ||
private static final String VECTOR_EMBEDDING_FIELD = "passage_embedding"; | ||
protected static final String RESCORE_QUERY = "hi"; | ||
private static String modelId = ""; | ||
|
||
/** | ||
* Test normalization with hybrid query and rescore. This test is required as rescore will not be compatible with version lower than 2.15 | ||
*/ | ||
public void testHybridQueryWithRescore_whenIndexWithMultipleShards_E2EFlow() throws Exception { | ||
waitForClusterHealthGreen(NODES_BWC_CLUSTER); | ||
switch (getClusterType()) { | ||
case OLD: | ||
modelId = uploadTextEmbeddingModel(); | ||
loadModel(modelId); | ||
createPipelineProcessor(modelId, PIPELINE_NAME); | ||
createIndexWithConfiguration( | ||
getIndexNameForTest(), | ||
Files.readString(Path.of(classLoader.getResource("processor/IndexMappings.json").toURI())), | ||
PIPELINE_NAME | ||
); | ||
addDocument(getIndexNameForTest(), "0", TEST_FIELD, TEXT, null, null); | ||
createSearchPipeline( | ||
SEARCH_PIPELINE_NAME, | ||
DEFAULT_NORMALIZATION_METHOD, | ||
DEFAULT_COMBINATION_METHOD, | ||
Map.of(PARAM_NAME_WEIGHTS, Arrays.toString(new float[] { 0.3f, 0.7f })) | ||
); | ||
break; | ||
case MIXED: | ||
modelId = getModelId(getIngestionPipeline(PIPELINE_NAME), TEXT_EMBEDDING_PROCESSOR); | ||
int totalDocsCountMixed; | ||
if (isFirstMixedRound()) { | ||
totalDocsCountMixed = NUM_DOCS_PER_ROUND; | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
QueryBuilder rescorer = QueryBuilders.matchQuery(TEST_FIELD, RESCORE_QUERY).boost(0.3f); | ||
validateTestIndexOnUpgrade(totalDocsCountMixed, modelId, hybridQueryBuilder, rescorer); | ||
addDocument(getIndexNameForTest(), "1", TEST_FIELD, TEXT_MIXED, null, null); | ||
} else { | ||
totalDocsCountMixed = 2 * NUM_DOCS_PER_ROUND; | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
validateTestIndexOnUpgrade(totalDocsCountMixed, modelId, hybridQueryBuilder, null); | ||
} | ||
break; | ||
case UPGRADED: | ||
try { | ||
modelId = getModelId(getIngestionPipeline(PIPELINE_NAME), TEXT_EMBEDDING_PROCESSOR); | ||
int totalDocsCountUpgraded = 3 * NUM_DOCS_PER_ROUND; | ||
loadModel(modelId); | ||
addDocument(getIndexNameForTest(), "2", TEST_FIELD, TEXT_UPGRADED, null, null); | ||
HybridQueryBuilder hybridQueryBuilder = getQueryBuilder(modelId, null, null); | ||
QueryBuilder rescorer = QueryBuilders.matchQuery(TEST_FIELD, RESCORE_QUERY).boost(0.3f); | ||
validateTestIndexOnUpgrade(totalDocsCountUpgraded, modelId, hybridQueryBuilder, rescorer); | ||
hybridQueryBuilder = getQueryBuilder(modelId, Map.of("ef_search", 100), RescoreContext.getDefault()); | ||
validateTestIndexOnUpgrade(totalDocsCountUpgraded, modelId, hybridQueryBuilder, rescorer); | ||
} finally { | ||
wipeOfTestResources(getIndexNameForTest(), PIPELINE_NAME, modelId, SEARCH_PIPELINE_NAME); | ||
} | ||
break; | ||
default: | ||
throw new IllegalStateException("Unexpected value: " + getClusterType()); | ||
} | ||
} | ||
|
||
private void validateTestIndexOnUpgrade( | ||
final int numberOfDocs, | ||
final String modelId, | ||
HybridQueryBuilder hybridQueryBuilder, | ||
QueryBuilder rescorer | ||
) throws Exception { | ||
int docCount = getDocCount(getIndexNameForTest()); | ||
assertEquals(numberOfDocs, docCount); | ||
loadModel(modelId); | ||
Map<String, Object> searchResponseAsMap = search( | ||
getIndexNameForTest(), | ||
hybridQueryBuilder, | ||
rescorer, | ||
1, | ||
Map.of("search_pipeline", SEARCH_PIPELINE_NAME) | ||
); | ||
assertNotNull(searchResponseAsMap); | ||
int hits = getHitCount(searchResponseAsMap); | ||
assertEquals(1, hits); | ||
List<Double> scoresList = getNormalizationScoreList(searchResponseAsMap); | ||
for (Double score : scoresList) { | ||
assertTrue(0 <= score && score <= 2); | ||
} | ||
} | ||
|
||
private HybridQueryBuilder getQueryBuilder( | ||
final String modelId, | ||
final Map<String, ?> methodParameters, | ||
final RescoreContext rescoreContextForNeuralQuery | ||
) { | ||
NeuralQueryBuilder neuralQueryBuilder = NeuralQueryBuilder.builder() | ||
.fieldName(VECTOR_EMBEDDING_FIELD) | ||
.modelId(modelId) | ||
.queryText(QUERY) | ||
.k(5) | ||
.build(); | ||
if (methodParameters != null) { | ||
neuralQueryBuilder.methodParameters(methodParameters); | ||
} | ||
if (Objects.nonNull(rescoreContextForNeuralQuery)) { | ||
neuralQueryBuilder.rescoreContext(rescoreContextForNeuralQuery); | ||
} | ||
|
||
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("text", QUERY); | ||
|
||
HybridQueryBuilder hybridQueryBuilder = new HybridQueryBuilder(); | ||
hybridQueryBuilder.add(matchQueryBuilder); | ||
hybridQueryBuilder.add(neuralQueryBuilder); | ||
|
||
return hybridQueryBuilder; | ||
} | ||
} |