-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_evaluation.py
123 lines (106 loc) · 4.16 KB
/
get_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import copy
import logging
import torch
from src.args import args_eval
from src.dataset import ActivityNetDataset, AudioSetZSLDataset, VGGSoundDataset, UCFDataset
from src.model import AVGZSLNet, DeviseModel, APN, CJME
from src.model_improvements import AVCA
from src.utils_improvements import get_model_params
from src.test import test
from src.utils import fix_seeds, load_args, load_model_parameters, setup_evaluation, load_model_weights
from pathlib import Path
def get_evaluation():
args = args_eval()
config = load_args(args.load_path_stage_B)
assert config.retrain_all, f"--retrain_all flag is not set in load_path_stage_B. Are you sure this is the correct path?. {args.load_path_stage_B}"
fix_seeds(config.seed)
logger, eval_dir, test_stats = setup_evaluation(args, config.__dict__.keys())
if args.dataset_name == "AudioSetZSL":
val_all_dataset = AudioSetZSLDataset(
args=config,
dataset_split="val",
zero_shot_mode="all",
)
test_dataset = AudioSetZSLDataset(
args=config,
dataset_split="test",
zero_shot_mode="all",
)
elif args.dataset_name == "VGGSound":
val_all_dataset = VGGSoundDataset(
args=config,
dataset_split="val",
#dataset_split="test",
zero_shot_mode=None,
)
test_dataset = VGGSoundDataset(
args=config,
dataset_split="test",
zero_shot_mode=None,
)
elif args.dataset_name == "UCF":
val_all_dataset = UCFDataset(
args=config,
dataset_split="val",
#dataset_split="test",
zero_shot_mode=None,
)
test_dataset = UCFDataset(
args=config,
dataset_split="test",
zero_shot_mode=None,
)
elif args.dataset_name == "ActivityNet":
val_all_dataset = ActivityNetDataset(
args=config,
dataset_split="val",
#dataset_split="test",
zero_shot_mode=None,
)
test_dataset = ActivityNetDataset(
args=config,
dataset_split="test",
zero_shot_mode=None,
)
else:
raise NotImplementedError()
if args.MSTR==True:
model_params = get_model_params(config.lr, config.first_additional_triplet, config.second_additional_triplet, \
config.reg_loss, config.additional_triplets_loss, config.embedding_dropout, \
config.decoder_dropout, config.additional_dropout,
config.embeddings_hidden_size, \
config.decoder_hidden_size, config.depth_transformer, config.momentum)
if args.ale==False and args.sje==False and args.devise==False and args.apn==False and args.cjme==False and args.MSTR==False:
model_A = AVGZSLNet(config)
elif args.ale==True or args.sje==True or args.devise==True:
model_A=DeviseModel(config)
elif args.apn==True:
model_A=APN(config)
elif args.cjme==True:
model_A=CJME(config)
elif args.MSTR==True:
model_A = AVCA(params_model=model_params, input_size_audio=config.input_size_audio,input_size_video=config.input_size_video)
logger.info(model_A)
model_B = copy.deepcopy(model_A)
weights_path_stage_A = list(args.load_path_stage_A.glob("*_score.pt"))[0]
epoch_A = load_model_weights(weights_path_stage_A, model_A)
weights_path_stage_B = list((args.load_path_stage_B / "checkpoints").glob(f"*_ckpt_{epoch_A - 1}.pt"))[0]
_ = load_model_weights(weights_path_stage_B, model_B)
model_A.to(config.device)
model_B.to(config.device)
test(
eval_name=args.eval_name,
val_dataset=val_all_dataset,
test_dataset=test_dataset,
model_A=model_A,
model_B=model_B,
device=args.device,
distance_fn=config.distance_fn,
devise_model=args.ale or args.sje or args.devise,
new_model_attention=config.AVCA,
apn=args.apn,
args=config
)
logger.info("FINISHED")
if __name__ == "__main__":
get_evaluation()