forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Add Cylinder3D head (open-mmlab#2291)
* add cylinder decode head * update * update * add lovasz loss * update * update * update * update * update * update * update * update * update * cylinder3d_head * update * update * update * update
- Loading branch information
Showing
6 changed files
with
599 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,7 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from .cylinder3d_head import Cylinder3DHead | ||
from .dgcnn_head import DGCNNHead | ||
from .paconv_head import PAConvHead | ||
from .pointnet2_head import PointNet2Head | ||
|
||
__all__ = ['PointNet2Head', 'DGCNNHead', 'PAConvHead'] | ||
__all__ = ['PointNet2Head', 'DGCNNHead', 'PAConvHead', 'Cylinder3DHead'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
|
||
import torch | ||
from mmcv.ops import SparseConvTensor, SparseModule, SubMConv3d | ||
|
||
from mmdet3d.registry import MODELS | ||
from mmdet3d.structures.det3d_data_sample import SampleList | ||
from mmdet3d.utils import OptMultiConfig | ||
from mmdet3d.utils.typing_utils import ConfigType | ||
from .decode_head import Base3DDecodeHead | ||
|
||
|
||
@MODELS.register_module() | ||
class Cylinder3DHead(Base3DDecodeHead): | ||
"""Cylinder3D decoder head. | ||
Decoder head used in `Cylinder3D <https://arxiv.org/abs/2011.10033>`_. | ||
Refer to the | ||
`official code <https://https://github.com/xinge008/Cylinder3D>`_. | ||
Args: | ||
channels (int): Channels after modules, before conv_seg. | ||
num_classes (int): Number of classes. | ||
dropout_ratio (float): Ratio of dropout layer. Defaults to 0. | ||
conv_cfg (dict or :obj:`ConfigDict`): Config of conv layers. | ||
Defaults to dict(type='Conv1d'). | ||
norm_cfg (dict or :obj:`ConfigDict`): Config of norm layers. | ||
Defaults to dict(type='BN1d'). | ||
act_cfg (dict or :obj:`ConfigDict`): Config of activation layers. | ||
Defaults to dict(type='ReLU'). | ||
loss_ce (dict or :obj:`ConfigDict`): Config of CrossEntropy loss. | ||
Defaults to dict( | ||
type='mmdet.CrossEntropyLoss', | ||
use_sigmoid=False, | ||
class_weight=None, | ||
loss_weight=1.0). | ||
loss_lovasz (dict or :obj:`ConfigDict`): Config of Lovasz loss. | ||
Defaults to dict(type='LovaszLoss', loss_weight=1.0). | ||
conv_seg_kernel_size (int): The kernel size used in conv_seg. | ||
Defaults to 3. | ||
ignore_index (int): The label index to be ignored. When using masked | ||
BCE loss, ignore_index should be set to None. Defaults to 0. | ||
init_cfg (dict or :obj:`ConfigDict` or list[dict or :obj:`ConfigDict`], | ||
optional): Initialization config dict. Defaults to None. | ||
""" | ||
|
||
def __init__(self, | ||
channels: int, | ||
num_classes: int, | ||
dropout_ratio: float = 0, | ||
conv_cfg: ConfigType = dict(type='Conv1d'), | ||
norm_cfg: ConfigType = dict(type='BN1d'), | ||
act_cfg: ConfigType = dict(type='ReLU'), | ||
loss_ce: ConfigType = dict( | ||
type='mmdet.CrossEntropyLoss', | ||
use_sigmoid=False, | ||
class_weight=None, | ||
loss_weight=1.0), | ||
loss_lovasz: ConfigType = dict( | ||
type='LovaszLoss', loss_weight=1.0), | ||
conv_seg_kernel_size: int = 3, | ||
ignore_index: int = 0, | ||
init_cfg: OptMultiConfig = None) -> None: | ||
super(Cylinder3DHead, self).__init__( | ||
channels=channels, | ||
num_classes=num_classes, | ||
dropout_ratio=dropout_ratio, | ||
conv_cfg=conv_cfg, | ||
norm_cfg=norm_cfg, | ||
act_cfg=act_cfg, | ||
conv_seg_kernel_size=conv_seg_kernel_size, | ||
init_cfg=init_cfg) | ||
|
||
self.loss_lovasz = MODELS.build(loss_lovasz) | ||
self.loss_ce = MODELS.build(loss_ce) | ||
self.ignore_index = ignore_index | ||
|
||
def build_conv_seg(self, channels: int, num_classes: int, | ||
kernel_size: int) -> SparseModule: | ||
return SubMConv3d( | ||
channels, | ||
num_classes, | ||
indice_key='logit', | ||
kernel_size=kernel_size, | ||
stride=1, | ||
padding=1, | ||
bias=True) | ||
|
||
def forward(self, sparse_voxels: SparseConvTensor) -> SparseConvTensor: | ||
"""Forward function.""" | ||
sparse_logits = self.cls_seg(sparse_voxels) | ||
return sparse_logits | ||
|
||
def loss_by_feat(self, seg_logit: SparseConvTensor, | ||
batch_data_samples: SampleList) -> dict: | ||
"""Compute semantic segmentation loss. | ||
Args: | ||
seg_logit (SparseConvTensor): Predicted per-voxel | ||
segmentation logits of shape [num_voxels, num_classes] | ||
stored in SparseConvTensor. | ||
batch_data_samples (List[:obj:`Det3DDataSample`]): The seg | ||
data samples. It usually includes information such | ||
as `metainfo` and `gt_pts_seg`. | ||
Returns: | ||
Dict[str, Tensor]: A dictionary of loss components. | ||
""" | ||
|
||
gt_semantic_segs = [ | ||
data_sample.gt_pts_seg.voxel_semantic_mask | ||
for data_sample in batch_data_samples | ||
] | ||
seg_label = torch.cat(gt_semantic_segs) | ||
seg_logit_feat = seg_logit.features | ||
loss = dict() | ||
loss['loss_ce'] = self.loss_ce( | ||
seg_logit_feat, seg_label, ignore_index=self.ignore_index) | ||
seg_logit_feat = seg_logit_feat.permute(1, 0)[None, :, :, | ||
None] # pseudo BCHW | ||
loss['loss_lovasz'] = self.loss_lovasz( | ||
seg_logit_feat, seg_label, ignore_index=self.ignore_index) | ||
|
||
return loss | ||
|
||
def predict( | ||
self, | ||
inputs: SparseConvTensor, | ||
batch_inputs_dict: dict, | ||
batch_data_samples: SampleList, | ||
) -> torch.Tensor: | ||
"""Forward function for testing. | ||
Args: | ||
inputs (SparseConvTensor): Feature from backbone. | ||
batch_inputs_dict (dict): Input sample dict which includes 'points' | ||
and 'voxels' keys. | ||
- points (List[Tensor]): Point cloud of each sample. | ||
- voxels (dict): Dict of voxelized voxels and the corresponding | ||
coordinates. | ||
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data | ||
samples. It usually includes information such as `metainfo` and | ||
`gt_pts_seg`. We use `point2voxel_map` in this function. | ||
Returns: | ||
List[torch.Tensor]: List of point-wise segmentation logits. | ||
""" | ||
seg_logits = self.forward(inputs).features | ||
|
||
seg_pred_list = [] | ||
coors = batch_inputs_dict['voxels']['voxel_coors'] | ||
for batch_idx in range(len(batch_data_samples)): | ||
seg_logits_sample = seg_logits[coors[:, 0] == batch_idx] | ||
point2voxel_map = batch_data_samples[ | ||
batch_idx].gt_pts_seg.point2voxel_map.long() | ||
point_seg_predicts = seg_logits_sample[point2voxel_map] | ||
seg_pred_list.append(point_seg_predicts) | ||
|
||
return seg_pred_list |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.