Skip to content

yanweiyue/MoG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Usage of MoG

Introduce

Under each folder:

  • gnn.py and conv.py are basic gnn(GCN,SAGE,PNA,Deepergcn...) implementation codes

  • Splearner.py implements a node-granular graph pruner

  • MoE.py implements a model that mixes pruners with different sparsities

  • MoG.py bridges the connection between MoE and GNN

Usage example

For the ogbn_proteins dataset, please cd ogbn_proteins first.

python main.py --use_gpu --conv_encode_edge --use_one_hot_encoding --num_layers 28 --block res+ --gcn_aggr max --k_list 1 --expert_select 1
python main.py --use_gpu --conv_encode_edge --use_one_hot_encoding --num_layers 28 --block res+ --gcn_aggr max --k_list 0.9 0.7 0.5 --expert_select 2
python main.py --use_gpu --conv_encode_edge --use_one_hot_encoding --num_layers 28 --block res+ --gcn_aggr max --k_list 0.7 0.5 0.3 --expert_select 2
python main.py --use_gpu --conv_encode_edge --use_one_hot_encoding --num_layers 28 --block res+ --gcn_aggr max --k_list 0.4 0.3 0.2 --expert_select 2

For the MNIST dataset, please cd MNIST first.

python main.py --k_list 1 --expert_select 1
python main.py --k_list 0.8 0.5 0.4 --expert_select 2
python main.py --k_list 0.6 0.3 0.2 --expert_select 2
python main.py --k_list 0.35 0.1 0.1 --expert_select 2

About

the code of MoG

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages