Skip to content

Commit

Permalink
[TAG] Freeze Chapter 5 for localization and press
Browse files Browse the repository at this point in the history
  • Loading branch information
astonzhang committed Sep 24, 2018
1 parent 42a977f commit b2620f7
Show file tree
Hide file tree
Showing 7 changed files with 10 additions and 10 deletions.
2 changes: 1 addition & 1 deletion chapter_computer-vision/image-augmentation.md
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ def try_all_gpus():
ctx = mx.gpu(i)
_ = nd.array([0], ctx=ctx)
ctxes.append(ctx)
except:
except mx.base.MXNetError:
pass
if not ctxes:
ctxes = [mx.cpu()]
Expand Down
2 changes: 1 addition & 1 deletion chapter_convolutional-neural-networks/batch-norm.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
X_hat = (X - mean) / nd.sqrt(var + eps)
# 更新移动平均的均值和方差。
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var
moving_var = momentum * moving_var + (1.0 - momentum) * var
Y = gamma * X_hat + beta # 拉升和偏移。
return Y, moving_mean, moving_var
```
Expand Down
2 changes: 1 addition & 1 deletion chapter_convolutional-neural-networks/googlenet.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ class Inception(nn.Block):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
p4 = self.p4_2(self.p4_1(x))
return nd.concat(p1, p2, p3, p4, dim=1) # 在通道维上连结输出。
```

Expand Down
8 changes: 4 additions & 4 deletions chapter_convolutional-neural-networks/lenet.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍
```{.python .input}
import gluonbook as gb
import mxnet as mx
from mxnet import autograd, gluon, init, nd
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import loss as gloss, nn
import time
Expand Down Expand Up @@ -63,15 +63,15 @@ train_iter, test_iter = gb.load_data_fashion_mnist(batch_size=batch_size)
因为卷积神经网络计算比多层感知机要复杂,建议使用GPU来加速计算。我们尝试在`gpu(0)`上创建NDArray,如果成功则使用`gpu(0)`,否则仍然使用CPU。

```{.python .input}
def try_gpu(): # 本函数已保存在 gluonbook 包中方便以后使用。
def try_gpu4(): # 本函数已保存在 gluonbook 包中方便以后使用。
try:
ctx = mx.gpu()
_ = nd.zeros((1,), ctx=ctx)
except:
except mx.base.MXNetError:
ctx = mx.cpu()
return ctx
ctx = try_gpu()
ctx = try_gpu4()
ctx
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def comp_conv2d(conv2d, X):
conv2d.initialize()
# (1,1)代表批量大小和通道数(后面章节将介绍)均为 1。
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
Y = conv2d(X)
return Y.reshape(Y.shape[2:]) # 排除不关心的前两维:批量和通道。
# 注意这里是两侧分别填充 1 行或列,所以在两侧一共填充 2 行或列。
Expand Down
2 changes: 1 addition & 1 deletion chapter_convolutional-neural-networks/pooling.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def pool2d(X, pool_size, mode='max'):
if mode == 'max':
Y[i, j] = X[i: i + p_h, j: j + p_w].max()
elif mode == 'avg':
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y
```

Expand Down
2 changes: 1 addition & 1 deletion chapter_convolutional-neural-networks/vgg.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ from mxnet.gluon import nn
def vgg_block(num_convs, num_channels):
blk = nn.Sequential()
for _ in range(num_convs):
blk.add(nn.Conv2D(num_channels, kernel_size=3,
blk.add(nn.Conv2D(num_channels, kernel_size=3,
padding=1, activation='relu'))
blk.add(nn.MaxPool2D(pool_size=2, strides=2))
return blk
Expand Down

0 comments on commit b2620f7

Please sign in to comment.