Skip to content

A caffe implementation of MobileNet-YOLO detection network

License

Notifications You must be signed in to change notification settings

yiran-THU/MobileNet-YOLO

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MobileNet-YOLO Caffe

MobileNet-YOLO

A caffe implementation of MobileNet-YOLO detection network , test on VOC2007

Network mAP Resolution Download NetScope Inference time (GTX 1080) Inference time (i5-4440)
MobileNet-YOLO-Lite 0.675 416 deploy graph N/A N/A
MobileNet-YOLOv3-Lite 0.717 320 deploy graph 6 ms 150 ms
MobileNet-YOLOv3-Lite 0.737 416 deploy graph 11 ms 280 ms

Note : the yolo_detection_output_layer not be optimization , and the deploy model was made by merge_bn.py

Windows Version

Caffe-YOLOv2-Windows

Oringinal darknet-yolov3

Converter

test on coco_minival_lmdb (IOU 0.5)

Network mAP Resolution Download NetScope
yolov3 54.4 416 caffemodel graph
yolov3-spp 59.3 608 caffemodel graph

Performance

Compare with YOLO , (IOU 0.5)

Network mAP Weight size Resolution NetScope
MobileNet-YOLOv3-Lite 34.0* 21.5 mb 320 graph
MobileNet-YOLOv3-Lite 37.3* 21.5 mb 416 graph
MobileNet-YOLOv3 40.3* 22.5 mb 416 graph
YOLOv3-Tiny 33.1 33.8 mb 416
  • (*) testdev-2015 server was closed , here use coco 2014 minival

Other models

You can find non-depthwise convolution network here , Yolo-Model-Zoo

network mAP resolution macc param
PVA-YOLOv3 0.703 416 2.55G 4.72M
Pelee-YOLOv3 0.703 416 4.25G 3.85M

CMake Build

Caffe page , dependency

> git clone https://github.com/eric612/MobileNet-YOLO.git 
> cd $MobileNet-YOLO_root/
> mkdir build
> cd build
> cmake ..
> make -j4
> make pycaffe

Training

Download lmdb

Unzip into $caffe_root/

Please check the path exist "$caffe_root\examples\VOC0712\VOC0712_trainval_lmdb" and "$caffe_root\examples\VOC0712\VOC0712_test_lmdb"

Download pre-trained weights , and save at $caffe_root\model\convert

> cd $caffe_root/
> sh train_yolo.sh

Demo

> cd $caffe_root/
> sh demo_yolo_lite.sh

If load success , you can see the image window like this

alt tag

Future work

  • Distillation training
  • Openimages training and testing

License and Citation

Caffe is released under the BSD 2-Clause license. The BAIR/BVLC reference models are released for unrestricted use.

Please cite Caffe in your publications if it helps your research:

@article{jia2014caffe,
  Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
  Journal = {arXiv preprint arXiv:1408.5093},
  Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
  Year = {2014}
}

About

A caffe implementation of MobileNet-YOLO detection network

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 71.0%
  • Makefile 9.7%
  • Python 8.5%
  • Cuda 5.6%
  • CMake 3.9%
  • MATLAB 0.7%
  • Other 0.6%