A caffe implementation of MobileNet-YOLO detection network , test on VOC2007
Network | mAP | Resolution | Download | NetScope | Inference time (GTX 1080) | Inference time (i5-4440) |
---|---|---|---|---|---|---|
MobileNet-YOLO-Lite | 0.675 | 416 | deploy | graph | N/A | N/A |
MobileNet-YOLOv3-Lite | 0.717 | 320 | deploy | graph | 6 ms | 150 ms |
MobileNet-YOLOv3-Lite | 0.737 | 416 | deploy | graph | 11 ms | 280 ms |
Note : the yolo_detection_output_layer not be optimization , and the deploy model was made by merge_bn.py
test on coco_minival_lmdb (IOU 0.5)
Network | mAP | Resolution | Download | NetScope |
---|---|---|---|---|
yolov3 | 54.4 | 416 | caffemodel | graph |
yolov3-spp | 59.3 | 608 | caffemodel | graph |
Compare with YOLO , (IOU 0.5)
Network | mAP | Weight size | Resolution | NetScope |
---|---|---|---|---|
MobileNet-YOLOv3-Lite | 34.0* | 21.5 mb | 320 | graph |
MobileNet-YOLOv3-Lite | 37.3* | 21.5 mb | 416 | graph |
MobileNet-YOLOv3 | 40.3* | 22.5 mb | 416 | graph |
YOLOv3-Tiny | 33.1 | 33.8 mb | 416 |
- (*) testdev-2015 server was closed , here use coco 2014 minival
You can find non-depthwise convolution network here , Yolo-Model-Zoo
network | mAP | resolution | macc | param |
---|---|---|---|---|
PVA-YOLOv3 | 0.703 | 416 | 2.55G | 4.72M |
Pelee-YOLOv3 | 0.703 | 416 | 4.25G | 3.85M |
> git clone https://github.com/eric612/MobileNet-YOLO.git
> cd $MobileNet-YOLO_root/
> mkdir build
> cd build
> cmake ..
> make -j4
> make pycaffe
Download lmdb
Unzip into $caffe_root/
Please check the path exist "$caffe_root\examples\VOC0712\VOC0712_trainval_lmdb" and "$caffe_root\examples\VOC0712\VOC0712_test_lmdb"
Download pre-trained weights , and save at $caffe_root\model\convert
> cd $caffe_root/
> sh train_yolo.sh
> cd $caffe_root/
> sh demo_yolo_lite.sh
If load success , you can see the image window like this
- Distillation training
- Openimages training and testing
Caffe is released under the BSD 2-Clause license. The BAIR/BVLC reference models are released for unrestricted use.
Please cite Caffe in your publications if it helps your research:
@article{jia2014caffe,
Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
Journal = {arXiv preprint arXiv:1408.5093},
Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
Year = {2014}
}