Skip to content

Commit

Permalink
[microNPU] Adding rounding mode attribute to operators (apache#9514)
Browse files Browse the repository at this point in the history
* [microNPU] Adding rounding mode attribute to operators

Allows rounding mode to be specified for each supported operator.
By default "TFL" is used, which matches that of the behavior of TFLite.
Other rounding mode options include "NATURAL" which rounds to the
nearest value and "TRUNCATE" which rounds towards zero.
  • Loading branch information
lhutton1 authored and ylc committed Jan 13, 2022
1 parent a00d3d4 commit 45fe954
Show file tree
Hide file tree
Showing 29 changed files with 371 additions and 114 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ def _extract_ethosu_binary_elementwise_params(attrs, args):
activation = attrs.activation
clip_min = attrs.clip_min
clip_max = attrs.clip_max
rounding_mode = attrs.rounding_mode
ifm_layout = attrs.ifm_layout
ifm2_layout = attrs.ifm2_layout
ofm_layout = attrs.ofm_layout
Expand All @@ -67,6 +68,7 @@ def _extract_ethosu_binary_elementwise_params(attrs, args):
activation,
clip_min,
clip_max,
rounding_mode,
ifm_layout,
ifm2_layout,
ofm_layout,
Expand Down Expand Up @@ -111,6 +113,7 @@ def ethosu_binary_elementwise(
activation: Optional[str] = "NONE",
clip_min: Optional[int] = 0,
clip_max: Optional[int] = 0,
rounding_mode: Optional[str] = "TFL",
ifm_layout: Optional[str] = "NHWC",
ifm2_layout: Optional[str] = "NHWC",
ofm_layout: Optional[str] = "NHWC",
Expand Down Expand Up @@ -179,6 +182,11 @@ def ethosu_binary_elementwise(
The minimum clipping value if activation = "CLIP".
clip_max : int, optional
The maximum clipping value if activation = "CLIP".
rounding_mode : str, optional
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
ifm_layout : str, optional
The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16".
ifm2_layout : str, optional
Expand Down Expand Up @@ -208,6 +216,7 @@ def ethosu_binary_elementwise(
activation,
clip_min,
clip_max,
rounding_mode,
ifm_layout,
ifm2_layout,
ofm_layout,
Expand Down
9 changes: 9 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/op/convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ def _extract_ethosu_conv2d_params(attrs, args):
activation = attrs.activation
clip_min = attrs.clip_min
clip_max = attrs.clip_max
rounding_mode = attrs.rounding_mode
upscale = attrs.upscale
ifm_layout = attrs.ifm_layout
ofm_layout = attrs.ofm_layout
Expand All @@ -65,6 +66,7 @@ def _extract_ethosu_conv2d_params(attrs, args):
activation,
clip_min,
clip_max,
rounding_mode,
upscale,
ifm_layout,
ofm_layout,
Expand Down Expand Up @@ -108,6 +110,7 @@ def ethosu_conv2d(
activation: str = "NONE",
clip_min: int = 0,
clip_max: int = 0,
rounding_mode: str = "TFL",
upscale: str = "NONE",
ifm_layout: str = "NHWC",
ofm_layout: str = "NHWC",
Expand Down Expand Up @@ -164,6 +167,11 @@ def ethosu_conv2d(
The minimum clipping value if activation = "CLIP"
clip_max : int, optional,
The maximum clipping value if activation = "CLIP"
rounding_mode : str, optional
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
upscale : str, optional
The 2x2 upscaling mode to apply to the Input Feature Map tensor.
"NONE" - no upscaling.
Expand Down Expand Up @@ -198,6 +206,7 @@ def ethosu_conv2d(
activation,
clip_min,
clip_max,
rounding_mode,
upscale,
ifm_layout,
ofm_layout,
Expand Down
9 changes: 9 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/op/depthwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ def _extract_ethosu_depthwise_conv2d_params(attrs, args):
activation = attrs.activation
clip_min = attrs.clip_min
clip_max = attrs.clip_max
rounding_mode = attrs.rounding_mode
upscale = attrs.upscale
ifm_layout = attrs.ifm_layout
ofm_layout = attrs.ofm_layout
Expand All @@ -66,6 +67,7 @@ def _extract_ethosu_depthwise_conv2d_params(attrs, args):
activation,
clip_min,
clip_max,
rounding_mode,
upscale,
ifm_layout,
ofm_layout,
Expand Down Expand Up @@ -109,6 +111,7 @@ def ethosu_depthwise_conv2d(
activation: str = "NONE",
clip_min: int = 0,
clip_max: int = 0,
rounding_mode: str = "TFL",
upscale: str = "NONE",
ifm_layout: str = "NHWC",
ofm_layout: str = "NHWC",
Expand Down Expand Up @@ -166,6 +169,11 @@ def ethosu_depthwise_conv2d(
The minimum clipping value if activation = "CLIP"
clip_max : int, optional,
The maximum clipping value if activation = "CLIP"
rounding_mode : str, optional
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
upscale : str, optional
The 2x2 upscaling mode to apply to the Input Feature Map tensor.
"NONE" - no upscaling.
Expand Down Expand Up @@ -200,6 +208,7 @@ def ethosu_depthwise_conv2d(
activation,
clip_min,
clip_max,
rounding_mode,
upscale,
ifm_layout,
ofm_layout,
Expand Down
9 changes: 9 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/op/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ def _extract_ethosu_pooling_params(attrs, args):
activation = attrs.activation
clip_min = attrs.clip_min
clip_max = attrs.clip_max
rounding_mode = attrs.rounding_mode
upscale = attrs.upscale
ifm_layout = attrs.ifm_layout
ofm_layout = attrs.ofm_layout
Expand All @@ -63,6 +64,7 @@ def _extract_ethosu_pooling_params(attrs, args):
activation,
clip_min,
clip_max,
rounding_mode,
upscale,
ifm_layout,
ofm_layout,
Expand Down Expand Up @@ -103,6 +105,7 @@ def ethosu_pooling(
activation: str = "NONE",
clip_min: int = 0,
clip_max: int = 0,
rounding_mode: str = "TFL",
upscale: str = "NONE",
ifm_layout: str = "NHWC",
ofm_layout: str = "NHWC",
Expand Down Expand Up @@ -146,6 +149,11 @@ def ethosu_pooling(
The minimum clipping value if activation = "CLIP".
clip_max : int, optional
The maximum clipping value if activation = "CLIP".
rounding_mode : str, optional
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
upscale: str, optional
The 2x2 upscaling mode to apply to the Input Feature Map tensor.
"NONE" - no upscaling.
Expand Down Expand Up @@ -176,6 +184,7 @@ def ethosu_pooling(
activation,
clip_min,
clip_max,
rounding_mode,
upscale,
ifm_layout,
ofm_layout,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ def binary_elementwise_compute(
activation: str,
clip_min: int,
clip_max: int,
rounding_mode: str,
ifm_layout: str,
ifm2_layout: str,
ofm_layout: str,
Expand Down Expand Up @@ -94,6 +95,11 @@ def binary_elementwise_compute(
The minimum clipping value if activation = "CLIP".
clip_max : int
The maximum clipping value if activation = "CLIP".
rounding_mode : str
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
ifm_layout : str, optional
The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16".
ifm2_layout : str, optional
Expand Down Expand Up @@ -136,6 +142,7 @@ def binary_elementwise_compute(
"activation": activation,
"clip_min": clip_min,
"clip_max": clip_max,
"rounding_mode": rounding_mode,
}

operators = {
Expand Down
8 changes: 8 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/te/convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ def conv2d_compute(
activation: str,
clip_min: int,
clip_max: int,
rounding_mode: str,
upscale: str,
ifm_layout: str,
ofm_layout: str,
Expand Down Expand Up @@ -81,11 +82,17 @@ def conv2d_compute(
The minimum clipping value if activation = "CLIP".
clip_max : int
The maximum clipping value if activation = "CLIP".
rounding_mode : str
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
upscale : str
The 2x2 upscaling mode to apply to the Input Feature Map tensor.
"NONE" - no upscaling.
"NEAREST" - upscale using nearest neighbour.
"ZEROS" - upscale using zeros.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
ifm_layout : str
The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16".
ofm_layout : str
Expand Down Expand Up @@ -126,6 +133,7 @@ def conv2d_compute(
"upscale": upscale,
"clip_min": clip_min,
"clip_max": clip_max,
"rounding_mode": rounding_mode,
"stride_h": stride_h,
"stride_w": stride_w,
"dilation_h": dilation_h,
Expand Down
9 changes: 8 additions & 1 deletion python/tvm/relay/backend/contrib/ethosu/te/depthwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ def depthwise_conv2d_compute(
activation: str,
clip_min: int,
clip_max: int,
rounding_mode: str,
upscale: str,
ifm_layout: str,
ofm_layout: str,
Expand Down Expand Up @@ -81,6 +82,11 @@ def depthwise_conv2d_compute(
The minimum clipping value if activation = "CLIP".
clip_max : int
The maximum clipping value if activation = "CLIP".
rounding_mode : str
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
upscale : str
The 2x2 upscaling mode to apply to the Input Feature Map tensor.
"NONE" - no upscaling.
Expand Down Expand Up @@ -120,9 +126,10 @@ def depthwise_conv2d_compute(
"op": "ethosu_depthwise_conv2d",
"weight_zero_point": weight_zero_point,
"activation": activation,
"upscale": upscale,
"clip_min": clip_min,
"clip_max": clip_max,
"rounding_mode": rounding_mode,
"upscale": upscale,
"stride_h": stride_h,
"stride_w": stride_w,
"dilation_h": dilation_h,
Expand Down
7 changes: 7 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/te/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@ def pooling_compute(
activation: str,
clip_min: int,
clip_max: int,
rounding_mode: str,
upscale: str,
ifm_layout: str,
ofm_layout: str,
Expand Down Expand Up @@ -78,6 +79,11 @@ def pooling_compute(
The minimum clipping value if activation = "CLIP".
clip_max : int
The maximum clipping value if activation = "CLIP".
rounding_mode : str
The rounding mode to apply to the Output Feature Map tensor.
"TFL" - Tensorflow Lite rounding scheme.
"TRUNCATE" - Truncate towards zero.
"NATURAL" - Round to nearest value, with x.5 rounded up towards +infinity.
upscale : str
The 2x2 upscaling mode to apply to the Input Feature Map tensor.
"NONE" - no upscaling.
Expand Down Expand Up @@ -113,6 +119,7 @@ def pooling_compute(
"activation": activation,
"clip_min": clip_min,
"clip_max": clip_max,
"rounding_mode": rounding_mode,
"upscale": upscale,
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@ def get_binary_elementwise_params(
operator_type=attrs["operator_type"],
reversed_operands=reversed_operands,
activation=serial_activation,
rounding_mode=attrs["rounding_mode"],
),
output_pointer,
replace_pointer,
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/backend/contrib/ethosu/tir/convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,7 @@ def get_conv2d_params(stmt, producers, consumers):
scale_bias=serial_scale_bias,
padding=serial_padding,
activation=serial_activation,
rounding_mode=attrs["rounding_mode"],
upscale="NONE",
),
output_pointer,
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/backend/contrib/ethosu/tir/depthwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@ def get_depthwise_conv2d_params(
scale_bias=serial_scale_bias,
padding=serial_padding,
activation=serial_activation,
rounding_mode=attrs["rounding_mode"],
upscale="NONE",
),
output_pointer,
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/backend/contrib/ethosu/tir/identity.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,7 @@ def get_identity_params(
padding=SerialPadding(0, 0, 0, 0),
activation=serial_activation,
upscale="NONE",
rounding_mode="TFL",
),
output_pointer,
replace_pointer,
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relay/backend/contrib/ethosu/tir/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@ def get_pooling_params(
pool_shape=serial_kernel,
padding=serial_padding,
activation=serial_activation,
rounding_mode=attrs["rounding_mode"],
upscale="NONE",
),
output_pointer,
Expand Down
8 changes: 8 additions & 0 deletions python/tvm/relay/backend/contrib/ethosu/tir/spec.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,7 @@ def __init__(
scale_bias: SerialAddressRange,
padding: SerialPadding,
activation: SerialActivation,
rounding_mode: str,
upscale: str,
):
self.ifm = ifm
Expand All @@ -198,6 +199,7 @@ def __init__(
self.scale_bias = scale_bias
self.padding = padding
self.activation = activation
self.rounding_mode = rounding_mode
self.upscale = upscale


Expand All @@ -215,6 +217,7 @@ def __init__(
scale_bias: SerialAddressRange,
padding: SerialPadding,
activation: SerialActivation,
rounding_mode: str,
upscale: str,
):
self.ifm = ifm
Expand All @@ -225,6 +228,7 @@ def __init__(
self.scale_bias = scale_bias
self.padding = padding
self.activation = activation
self.rounding_mode = rounding_mode
self.upscale = upscale


Expand Down Expand Up @@ -252,6 +256,7 @@ def __init__(
pool_shape: SerialKernel,
padding: SerialPadding,
activation: SerialActivation,
rounding_mode: str,
upscale: str,
):
self.ifm = ifm
Expand All @@ -260,6 +265,7 @@ def __init__(
self.pool_shape = pool_shape
self.padding = padding
self.activation = activation
self.rounding_mode = rounding_mode
self.upscale = upscale


Expand All @@ -275,10 +281,12 @@ def __init__(
operator_type: str,
reversed_operands: bool,
activation: SerialActivation,
rounding_mode: str,
):
self.ifm = ifm
self.ifm2 = ifm2
self.ofm = ofm
self.operator_type = operator_type
self.reversed_operands = reversed_operands
self.activation = activation
self.rounding_mode = rounding_mode
Loading

0 comments on commit 45fe954

Please sign in to comment.