Skip to content
This repository has been archived by the owner on Nov 22, 2022. It is now read-only.

SPARK-29360 #279

Merged
merged 2 commits into from
Jan 10, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 21 additions & 17 deletions third_party/3/pyspark/ml/fpm.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -9,35 +9,31 @@ from pyspark.ml.wrapper import JavaEstimator, JavaParams, JavaModel
from pyspark.ml.param.shared import *
from pyspark.sql.dataframe import DataFrame

class HasMinSupport(Params):
class _FPGrowthParams(HasPredictionCol):
itemsCol: Param[str]
minSupport: Param[float]
def setMinSupport(self: P, value: float) -> P: ...
def getMinSupport(self) -> float: ...

class HasNumPartitions(Params):
numPartitions: Param[int]
def setNumPartitions(self: P, value: int) -> P: ...
def getNumPartitions(self) -> int: ...

class HasMinConfidence(Params):
minConfidence: Param[float]
def setMinConfidence(self: P, value: float) -> P: ...
def getMinConfidence(self) -> float: ...

class HasItemsCol(Params):
itemsCol: Param[str]
def setItemsCol(self: P, value: str) -> P: ...
def getItemsCol(self) -> str: ...
def getMinSupport(self) -> float: ...
def getNumPartitions(self) -> int: ...
def getMinConfidence(self) -> float: ...

class FPGrowthModel(JavaModel, JavaMLWritable, JavaMLReadable[FPGrowthModel]):
class FPGrowthModel(JavaModel, _FPGrowthParams, JavaMLWritable, JavaMLReadable[FPGrowthModel]):
def setItemsCol(self, value: str) -> FPGrowthModel: ...
def setMinConfidence(self, value: float) -> FPGrowthModel: ...
@property
def freqItemsets(self) -> DataFrame: ...
@property
def associationRules(self) -> DataFrame: ...

class FPGrowth(JavaEstimator[FPGrowthModel], HasItemsCol, HasPredictionCol, HasMinSupport, HasNumPartitions, HasMinConfidence, JavaMLWritable, JavaMLReadable[FPGrowth]):
class FPGrowth(JavaEstimator[FPGrowthModel], _FPGrowthParams, JavaMLWritable, JavaMLReadable[FPGrowth]):
def __init__(self, *, minSupport: float = ..., minConfidence: float = ..., itemsCol: str = ..., predictionCol: str = ..., numPartitions: Optional[int] = ...) -> None: ...
def setParams(self, *, minSupport: float = ..., minConfidence: float = ..., itemsCol: str = ..., predictionCol: str = ..., numPartitions: Optional[int] = ...) -> FPGrowth: ...
def setItemsCol(self, value: str) -> FPGrowth: ...
def setMinSupport(self, value: float) -> FPGrowth: ...
def setNumPartitions(self, value: int) -> FPGrowth: ...
def setMinConfidence(self, value: float) -> FPGrowth: ...

class PrefixSpan(JavaParams):
minSupport: Param[float]
Expand All @@ -46,4 +42,12 @@ class PrefixSpan(JavaParams):
sequenceCol: Param[str]
def __init__(self, *, minSupport: float = ..., maxPatternLength: int = ..., maxLocalProjDBSize: int = ..., sequenceCol: str = ...) -> None: ...
def setParams(self, *, minSupport: float = ..., maxPatternLength: int = ..., maxLocalProjDBSize: int = ..., sequenceCol: str = ...) -> PrefixSpan: ...
def setMinSupport(self, value: float) -> PrefixSpan: ...
def getMinSupport(self) -> float: ...
def setMaxPatternLength(self, value: int) -> PrefixSpan: ...
def getMaxPatternLength(self) -> int: ...
def setMaxLocalProjDBSize(self, value: int) -> PrefixSpan: ...
def getMaxLocalProjDBSize(self) -> int: ...
def setSequenceCol(self, value: str) -> PrefixSpan: ...
def getSequenceCol(self) -> str: ...
def findFrequentSequentialPatterns(self, dataset: DataFrame) -> DataFrame: ...