Skip to content
This repository has been archived by the owner on Nov 22, 2022. It is now read-only.

SPARK-29656 Add aggregationDepth to GeneralizedLinearRegression and GaussianMixture #305

Merged
merged 1 commit into from
Jan 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions third_party/3/pyspark/ml/clustering.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ class ClusteringSummary(JavaWrapper):
@property
def numIter(self) -> int: ...

class _GaussianMixtureParams(HasMaxIter, HasFeaturesCol, HasSeed, HasPredictionCol, HasProbabilityCol, HasTol):
class _GaussianMixtureParams(HasMaxIter, HasFeaturesCol, HasSeed, HasPredictionCol, HasProbabilityCol, HasTol, HasAggregationDepth):
k: Param[int]
def getK(self) -> int: ...

Expand All @@ -45,8 +45,8 @@ class GaussianMixtureModel(JavaModel, _GaussianMixtureParams, JavaMLWritable, Ja
def predictProbability(self, value: Vector) -> Vector: ...

class GaussianMixture(JavaEstimator[GaussianMixtureModel], _GaussianMixtureParams, JavaMLWritable, JavaMLReadable[GaussianMixture]):
def __init__(self, *, featuresCol: str = ..., predictionCol: str = ..., k: int = ..., probabilityCol: str = ..., tol: float = ..., maxIter: int = ..., seed: Optional[int] = ...) -> None: ...
def setParams(self, *, featuresCol: str = ..., predictionCol: str = ..., k: int = ..., probabilityCol: str = ..., tol: float = ..., maxIter: int = ..., seed: Optional[int] = ...) -> GaussianMixture: ...
def __init__(self, *, featuresCol: str = ..., predictionCol: str = ..., k: int = ..., probabilityCol: str = ..., tol: float = ..., maxIter: int = ..., seed: Optional[int] = ..., aggregationDepth: int = ...) -> None: ...
def setParams(self, *, featuresCol: str = ..., predictionCol: str = ..., k: int = ..., probabilityCol: str = ..., tol: float = ..., maxIter: int = ..., seed: Optional[int] = ..., aggregationDepth: int = ...) -> GaussianMixture: ...
def setK(self, value: int) -> GaussianMixture: ...
def setMaxIter(self, value: int) -> GaussianMixture: ...
def setFeaturesCol(self, value: str) -> GaussianMixture: ...
Expand Down Expand Up @@ -206,5 +206,5 @@ class PowerIterationClustering(_PowerIterationClusteringParams, JavaParams, Java
def setSrcCol(self, value: str) -> str: ...
def setDstCol(self, value: str) -> PowerIterationClustering: ...
def setMaxIter(self, value: int) -> PowerIterationClustering: ...
def setWeightCol(self, value: str) -> PowerIterationClustering: ...
def setWeightCol(self, value: str) -> PowerIterationClustering: ...
def assignClusters(self, dataset: DataFrame) -> DataFrame: ...
6 changes: 3 additions & 3 deletions third_party/3/pyspark/ml/regression.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ class AFTSurvivalRegressionModel(JavaModel, _AFTSurvivalRegressionParams, JavaML
def predictQuantiles(self, features: Vector) -> Vector: ...
def predict(self, features: Vector) -> float: ...

class _GeneralizedLinearRegressionParams(_JavaPredictorParams, HasFitIntercept, HasMaxIter, HasTol, HasRegParam, HasWeightCol, HasSolver):
class _GeneralizedLinearRegressionParams(_JavaPredictorParams, HasFitIntercept, HasMaxIter, HasTol, HasRegParam, HasWeightCol, HasSolver, HasAggregationDepth):
family: Param[str]
link: Param[str]
linkPredictionCol: Param[str]
Expand All @@ -236,8 +236,8 @@ class _GeneralizedLinearRegressionParams(_JavaPredictorParams, HasFitIntercept,
def getOffsetCol(self) -> str: ...

class GeneralizedLinearRegression(JavaPredictor[GeneralizedLinearRegressionModel], _GeneralizedLinearRegressionParams, JavaMLWritable, JavaMLReadable[GeneralizedLinearRegression]):
def __init__(self, *, labelCol: str = ..., featuresCol: str = ..., predictionCol: str = ..., family: str = ..., link: Optional[str] = ..., fitIntercept: bool = ..., maxIter: int = ..., tol: float = ..., regParam: float = ..., weightCol: Optional[str] = ..., solver: str = ..., linkPredictionCol: Optional[str] = ..., variancePower: float = ..., linkPower: Optional[float] = ..., offsetCol: Optional[str] = ...) -> None: ...
def setParams(self, *, labelCol: str = ..., featuresCol: str = ..., predictionCol: str = ..., family: str = ..., link: Optional[str] = ..., fitIntercept: bool = ..., maxIter: int = ..., tol: float = ..., regParam: float = ..., weightCol: Optional[str] = ..., solver: str = ..., linkPredictionCol: Optional[str] = ..., variancePower: float = ..., linkPower: Optional[float] = ..., offsetCol: Optional[str] = ...) -> GeneralizedLinearRegression: ...
def __init__(self, *, labelCol: str = ..., featuresCol: str = ..., predictionCol: str = ..., family: str = ..., link: Optional[str] = ..., fitIntercept: bool = ..., maxIter: int = ..., tol: float = ..., regParam: float = ..., weightCol: Optional[str] = ..., solver: str = ..., linkPredictionCol: Optional[str] = ..., variancePower: float = ..., linkPower: Optional[float] = ..., offsetCol: Optional[str] = ..., aggregationDepth: int = ...) -> None: ...
def setParams(self, *, labelCol: str = ..., featuresCol: str = ..., predictionCol: str = ..., family: str = ..., link: Optional[str] = ..., fitIntercept: bool = ..., maxIter: int = ..., tol: float = ..., regParam: float = ..., weightCol: Optional[str] = ..., solver: str = ..., linkPredictionCol: Optional[str] = ..., variancePower: float = ..., linkPower: Optional[float] = ..., offsetCol: Optional[str] = ..., aggregationDepth: int = ...) -> GeneralizedLinearRegression: ...
def setFamily(self, value: str) -> GeneralizedLinearRegression: ...
def setLinkPredictionCol(self, value: str) -> GeneralizedLinearRegression: ...
def setLink(self, value: str) -> GeneralizedLinearRegression: ...
Expand Down