Provide two installation methods:
- Build docker image
- Install with conda
- First, build a virtual environment with Docker, and YiTu_GNN can run on the environment. Docker installation please reference.
By running the following commands, we can construct a docker image called YiTu_GNN
, on which all subsequent experiments will be performed.
cd YiTu_GNN/docker
docker build -f Dockerfile -t YiTu_GNN .
- starting docker container:
docker run --gpus all -e NCCL_SOCKET_IFNAME=eno1 --rm -dit --shm-size="5g" --network=host --name YiTu_GNN YiTu_GNN /bin/bash
- --gpus all:indicating that all GPUs will be used
- -e NCCL_SOCKET_IFNAME=eno1: setting the Network Interface Card to be used
- --shm-size="5g": setting the size of shared memory
- --network=host: indicating that host network will be used
- installing YiTu_GNN in docker container:
# 1. copy YiTu_GNN to docker container
docker cp YiTu_GNN YiTu_GNN:/home
# 2. enter docker container
docker exec -it YiTu_GNN bash
cd /home/YiTu_GNN
# 3. install YiTu_GNN
python setup.py install
- installing cmake:
version=3.18
build=0
mkdir ~/temp
cd ~/temp
wget https://cmake.org/files/v$version/cmake-$version.$build-Linux-x86_64.sh
sudo mkdir /opt/cmake
sudo sh cmake-$version.$build-Linux-x86_64.sh --prefix=/opt/cmake --skip-license
sudo ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
cd ~
rm -rf ~/temp
- installing conda:
export LANG=C.UTF-8 LC_ALL=C.UTF-8
export PATH=/opt/conda/bin:$PATH
apt-get update --fix-missing && \
apt-get install -y wget bzip2 ca-certificates curl git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh && \
/bin/bash ~/miniconda.sh -b -p /opt/conda && \
rm ~/miniconda.sh && \
/opt/conda/bin/conda clean -ya && \
ln -s /opt/conda/etc/profile.d/conda.sh /etc/profile.d/conda.sh && \
echo ". /opt/conda/etc/profile.d/conda.sh" >> ~/.bashrc && \
echo "conda activate base" >> ~/.bashrc
export TINI_VERSION=v0.16.1
source ~/.bashrc
- installing related dependency packages:
conda create -n YiTu_GNN python=3.7.5
conda activate YiTu_GNN
conda install -y astunparse numpy ninja pyyaml mkl \
mkl-include setuptools cffi \
typing_extensions future six \
requests dataclasses \
pytest nose cython scipy \
networkx matplotlib nltk \
tqdm pandas scikit-learn && \
conda install -y -c pytorch magma-cuda102
# stand-alone dependency packages
apt-get update && apt-get install -y --no-install-recommends \
libboost-all-dev \
libgoogle-perftools-dev \
protobuf-compiler && \
rm -rf /var/lib/apt/lists/*
- installing pytorch from source
mkdir ~/temp
cd ~/temp
# download the PyTorch source code that can support parameters with multiple versions
git clone --recursive https://github.com/Ningsir/pytorch.git -b multiversion-
cd pytorch
# if you are updating an existing checkout
git submodule sync
git submodule update --init --recursive
# Compile and install PyTorch
export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}
USE_NINJA=OFF python setup.py install --cmake
cd ~
rm -rf ~/temp
Possible problem: Lack of valgrind.h
Solution: cd third_party/valgrind && git checkout VALGRIND_3_18_0
- installing DGL:
conda install -y -c dglteam dgl-cuda10.2=0.7.1
- installing YiTu_GNN
python setup.py install
Environment requrements:
- G++==7.5.0
- cuda==10.2
- Openmpi==2.1.1
- Python=3.7
Run the following commands on root/examples/YiTu_GNN/NDP directory:
#compile graph algorithms with NDP
cmake .
make
#compile graph algorithms without NDP
cd nondp
make
cd ..
#compile graph formats converters
cd tools
make
cd ..
cd /home/data
git clone https://github.com/kimiyoung/planetoid.git
python example/YiTu_GNN/single/data_process.py --data_path /home/data/planetoid/data --dataset citeseer
python example/YiTu_GNN/single/data_process.py --data_path /home/data/planetoid/data --dataset cora
python example/YiTu_GNN/single/data_process.py --data_path /home/data/planetoid/data --dataset pubmed
adj.npz
: graph adjacency matrix, shape(vnum, vnum)
, saved asscipy.sparse
coo matrix format.labels.npy
: vertex label, shape(vnum,)
, saved asnumpy.array
format.test.npy
,train.npy
,val.npy
: boolean array, shape(vnum,)
, saved asnumpy.array
format.feat.npy
(optional): feature of vertex, shape(vnum, feat-size)
, saved asnumpy.array
, can be generated randomly if not provided.
mkdir reddit
curl --output reddit/reddit.zip https://data.dgl.ai/dataset/reddit.zip
unzip -d reddit reddit/reddit.zip
python examples/YiTu_GNN/NDP/data/dgl2NDP.py --dataset reddit --out-dir /home/reddit
-
hash partition
python YiTu_GNN/NDP/partition/hash.py --num-hops 2 --partition 1 --dataset /home/reddit
-
dg-based partition
python YiTu_GNN/NDP/partition/dg.py --num-hops 2 --partition 1 --dataset /home/reddit
The followings are two graph file examples.
Graph.el ("SOURCE DESTINATION" for each edge in each line):
0 1
0 3
2 3
1 2
Graph.wel ("SOURCE DESTINATION WEIGHT" for each edge in each line):
0 1 26
0 3 33
2 3 40
1 2 10
YiTu_GP accepts binary serialized pre-built CSR graph representation (.bcsr and .bcsrw). Reading binary formats is faster and more space efficient. To convert edge-list (.el) and weighted edge-list (.wel) format graph files to the binary format, run the following commands on the root/examples/YiTu_GNN/NDP directory:
#convert Graph.el to Graph.bcsr
tools/converter path_to_Graph.el
#convert Graph.wel to Graph.bcsr and Graph.bcsrw
tools/converter path_to_Graph.wel
The first command converts Graph.el to the binary CSR format and generates a binary graph file with .bcsr extension under the same directory as the original file. The second command converts Graph.wel to a binary graph file with .bcsr extension and a binary edgeWeight file with .bcsrw extension.
To run the sample programs, run the following on root directory:
python example/YiTu_GNN/single/gcn/main.py --data_path /home/data/planetoid/data --dataset citeseer --dim 3703 --classes 6
python example/YiTu_GNN/single/gcn/main.py --data_path /home/data/planetoid/data --dataset cora --dim 1433 --classes 7
python example/YiTu_GNN/single/gcn/main.py --data_path /home/data/planetoid/data --dataset pubmed --dim 500 --classes 3
To run the sample programs, run the following on root/examples/YiTu_GNN/NDP directory:
nondp/bfs-w --input bcsrgraph_path --source 1
nondp/cc-w --input bcsrgraph_path --source 1
nondp/pr-w --input bcsrgraph_path
nondp/sssp-w --input bcsrgraph_path --source 1
nondp/bc-w --input bcsrgraph_path --source 1
- Running Graph Server To run the graph server, run the following on root directory:
- NDP Store Server
python examples/YiTu_GNN/NDP/server/NDP_server.py --dataset /home/reddit --num-workers [1]
- Running Trainer To run the trainer, run the following on root/examples/YiTu_GNN/NDP directory:
- Graph Convolutional Network (GCN)
python demo.py --YiTu_GNN 1 --method gcn --dataset /home/reddit --gpu [0] --feat-size 602
- Graph Isomorphism Network (GIN)
python demo.py --YiTu_GNN 1 --method gin --dataset /home/reddit --gpu [0] --feat-size 602
The application takes a graph as input as well as some optional arguments. For example:
python demo.py --YiTu_GNN 0 --method bfs --input bcsrgraph_path --source 1
python demo.py --YiTu_GNN 0 --method cc --input bcsrgraph_path --source 1
python demo.py --YiTu_GNN 0 --method pr --input bcsrgraph_path
python demo.py --YiTu_GNN 0 --method sssp --input bcsrgraph_path --source 1
python demo.py --YiTu_GNN 0 --method sswp --input bcsrgraph_path --source 1
python demo.py --YiTu_GNN 0 --method bc --input bcsrgraph_path --source 1
For applications that run on unweighted graphs and weighted graphs, the input argument are both the graph file (.bcsr). For weighted graphs, the edgeWeight file (.bcsrw) should be in the same directory as the graph file (.bcsr).
The source argument is an integer to indicate the source vertex, and the source vertex id is 0 By default.