Skip to content

Commit

Permalink
Add JOSS badge/citation
Browse files Browse the repository at this point in the history
  • Loading branch information
reidjohnson committed Jan 20, 2024
1 parent 2221f4e commit 6a2018a
Showing 1 changed file with 27 additions and 7 deletions.
34 changes: 27 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
[![GitHub Actions](https://github.com/zillow/quantile-forest/actions/workflows/build.yml/badge.svg)](https://github.com/zillow/quantile-forest/actions/workflows/build.yml)
[![Codecov](https://codecov.io/gh/zillow/quantile-forest/branch/main/graph/badge.svg?token=STRT8T67YP)](https://codecov.io/gh/zillow/quantile-forest)
[![Code Style black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/quantile-forest)](https://pypi.org/project/quantile-forest)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.05976/status.svg)](https://doi.org/10.21105/joss.05976)

**quantile-forest** offers a Python implementation of quantile regression forests compatible with scikit-learn.

Expand All @@ -27,12 +27,12 @@ Usage
-----

```python
from quantile_forest import RandomForestQuantileRegressor
from sklearn import datasets
X, y = datasets.fetch_california_housing(return_X_y=True)
qrf = RandomForestQuantileRegressor()
qrf.fit(X, y)
y_pred = qrf.predict(X, quantiles=[0.025, 0.5, 0.975])
from quantile_forest import RandomForestQuantileRegressor
from sklearn import datasets
X, y = datasets.fetch_california_housing(return_X_y=True)
qrf = RandomForestQuantileRegressor()
qrf.fit(X, y)
y_pred = qrf.predict(X, quantiles=[0.025, 0.5, 0.975])
```

Documentation
Expand All @@ -45,3 +45,23 @@ References
----------

<a id="1">[1]</a> N. Meinshausen, "Quantile Regression Forests", Journal of Machine Learning Research, 7(Jun), 983-999, 2006. http://www.jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf

Citation
--------

If you use this package in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.05976 as

```bib
@article{Johnson2024,
doi = {10.21105/joss.05976},
url = {https://doi.org/10.21105/joss.05976},
year = {2024},
publisher = {The Open Journal},
volume = {9},
number = {93},
pages = {5976},
author = {Reid A. Johnson},
title = {quantile-forest: A Python Package for Quantile Regression Forests},
journal = {Journal of Open Source Software}
}
```

0 comments on commit 6a2018a

Please sign in to comment.