-
Notifications
You must be signed in to change notification settings - Fork 147
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Use pre-computation to speed-up Secp256r1 verification (#595)
- Loading branch information
Showing
13 changed files
with
1,025 additions
and
9 deletions.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
// Copyright (c) 2022, Mysten Labs, Inc. | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
use crate::groups::multiplier::integer_utils::{compute_base_2w_expansion, div_ceil}; | ||
use crate::groups::multiplier::ScalarMultiplier; | ||
use crate::groups::GroupElement; | ||
use crate::serde_helpers::ToFromByteArray; | ||
|
||
/// Performs scalar multiplication using a windowed method with a larger pre-computation table than | ||
/// the one used in the `windowed` multiplier. We must have HEIGHT >= ceil(SCALAR_SIZE * 8 / ceil(log2(WIDTH)) | ||
/// where WIDTH is the window width, and the pre-computation tables will be of size WIDTH x HEIGHT. | ||
/// Once pre-computation has been done, a scalar multiplication requires HEIGHT additions. Both `mul` | ||
/// and `double_mul` are constant time assuming the group operations for `G` are constant time. | ||
/// | ||
/// The algorithm used is the BGMW algorithm with base `2^WIDTH` and the basic digit set set to `0, ..., 2^WIDTH-1`. | ||
/// | ||
/// This method is faster than the WindowedScalarMultiplier for a single multiplication, but it requires | ||
/// a larger number of precomputed points. | ||
pub struct BGMWScalarMultiplier< | ||
G: GroupElement<ScalarType = S>, | ||
S: GroupElement + ToFromByteArray<SCALAR_SIZE>, | ||
const WIDTH: usize, | ||
const HEIGHT: usize, | ||
const SCALAR_SIZE: usize, | ||
> { | ||
/// Precomputed multiples of the base element, B, up to WIDTH x HEIGHT - 1. | ||
cache: [[G; WIDTH]; HEIGHT], | ||
} | ||
|
||
impl< | ||
G: GroupElement<ScalarType = S>, | ||
S: GroupElement + ToFromByteArray<SCALAR_SIZE>, | ||
const WIDTH: usize, | ||
const HEIGHT: usize, | ||
const SCALAR_SIZE: usize, | ||
> BGMWScalarMultiplier<G, S, WIDTH, HEIGHT, SCALAR_SIZE> | ||
{ | ||
/// The number of bits in the window. This is equal to the floor of the log2 of the `WIDTH`. | ||
const WINDOW_WIDTH: usize = (usize::BITS - WIDTH.leading_zeros() - 1) as usize; | ||
|
||
/// Get 2^{column * WINDOW_WIDTH} * row * base_point. | ||
fn get_precomputed_multiple(&self, row: usize, column: usize) -> G { | ||
self.cache[row][column] | ||
} | ||
} | ||
|
||
impl< | ||
G: GroupElement<ScalarType = S>, | ||
S: GroupElement + ToFromByteArray<SCALAR_SIZE>, | ||
const WIDTH: usize, | ||
const HEIGHT: usize, | ||
const SCALAR_SIZE: usize, | ||
> ScalarMultiplier<G> for BGMWScalarMultiplier<G, S, WIDTH, HEIGHT, SCALAR_SIZE> | ||
{ | ||
fn new(base_element: G) -> Self { | ||
// Verify parameters | ||
let lower_limit = div_ceil(SCALAR_SIZE * 8, Self::WINDOW_WIDTH); | ||
if HEIGHT < lower_limit { | ||
panic!("Invalid parameters. HEIGHT needs to be at least {} with the given WIDTH and SCALAR_SIZE.", lower_limit); | ||
} | ||
|
||
// Store cache[i][j] = 2^{i w} * j * base_element | ||
let mut cache = [[G::zero(); WIDTH]; HEIGHT]; | ||
|
||
// Compute cache[0][j] = j * base_element. | ||
for j in 1..WIDTH { | ||
cache[0][j] = cache[0][j - 1] + base_element; | ||
} | ||
|
||
// Compute cache[i][j] = 2^w * cache[i-1][j] for i > 0. | ||
for i in 1..HEIGHT { | ||
for j in 0..WIDTH { | ||
cache[i][j] = cache[i - 1][j]; | ||
for _ in 0..Self::WINDOW_WIDTH { | ||
cache[i][j] = cache[i][j].double(); | ||
} | ||
} | ||
} | ||
Self { cache } | ||
} | ||
|
||
fn mul(&self, scalar: &S) -> G { | ||
// Scalar as bytes in little-endian representation. | ||
let scalar_bytes = scalar.to_byte_array(); | ||
|
||
let base_2w_expansion = | ||
compute_base_2w_expansion::<SCALAR_SIZE>(&scalar_bytes, Self::WINDOW_WIDTH); | ||
|
||
let mut result = self.get_precomputed_multiple(0, base_2w_expansion[0]); | ||
for (i, digit) in base_2w_expansion.iter().enumerate().skip(1) { | ||
result += self.get_precomputed_multiple(i, *digit); | ||
} | ||
result | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::groups::ristretto255::{RistrettoPoint, RistrettoScalar}; | ||
use crate::groups::secp256r1::{ProjectivePoint, Scalar}; | ||
use ark_ff::{BigInteger, PrimeField}; | ||
use ark_secp256r1::Fr; | ||
|
||
#[test] | ||
fn test_scalar_multiplication_ristretto() { | ||
let multiplier = BGMWScalarMultiplier::<RistrettoPoint, RistrettoScalar, 16, 64, 32>::new( | ||
RistrettoPoint::generator(), | ||
); | ||
|
||
let scalars = [ | ||
RistrettoScalar::from(0), | ||
RistrettoScalar::from(1), | ||
RistrettoScalar::from(2), | ||
RistrettoScalar::from(1234), | ||
RistrettoScalar::from(123456), | ||
RistrettoScalar::from(123456789), | ||
RistrettoScalar::from(0xffffffffffffffff), | ||
RistrettoScalar::group_order(), | ||
RistrettoScalar::group_order() - RistrettoScalar::from(1), | ||
RistrettoScalar::group_order() + RistrettoScalar::from(1), | ||
]; | ||
|
||
for scalar in scalars { | ||
let expected = RistrettoPoint::generator() * scalar; | ||
let actual = multiplier.mul(&scalar); | ||
assert_eq!(expected, actual); | ||
} | ||
} | ||
|
||
#[test] | ||
fn test_scalar_multiplication_secp256r1() { | ||
let mut modulus_minus_one = Fr::MODULUS_MINUS_ONE_DIV_TWO; | ||
modulus_minus_one.mul2(); | ||
let scalars = [ | ||
Scalar::from(0), | ||
Scalar::from(1), | ||
Scalar::from(2), | ||
Scalar::from(1234), | ||
Scalar::from(123456), | ||
Scalar::from(123456789), | ||
Scalar::from(0xffffffffffffffff), | ||
Scalar(Fr::from(modulus_minus_one)), | ||
]; | ||
|
||
for scalar in scalars { | ||
let expected = ProjectivePoint::generator() * scalar; | ||
|
||
let multiplier = BGMWScalarMultiplier::<ProjectivePoint, Scalar, 16, 64, 32>::new( | ||
ProjectivePoint::generator(), | ||
); | ||
let actual = multiplier.mul(&scalar); | ||
assert_eq!(expected, actual); | ||
|
||
let multiplier = BGMWScalarMultiplier::<ProjectivePoint, Scalar, 32, 52, 32>::new( | ||
ProjectivePoint::generator(), | ||
); | ||
let actual = multiplier.mul(&scalar); | ||
assert_eq!(expected, actual); | ||
|
||
let multiplier = BGMWScalarMultiplier::<ProjectivePoint, Scalar, 64, 43, 32>::new( | ||
ProjectivePoint::generator(), | ||
); | ||
let actual = multiplier.mul(&scalar); | ||
assert_eq!(expected, actual); | ||
} | ||
|
||
// Assert a panic due to setting the HEIGHT too small | ||
assert!(std::panic::catch_unwind(|| { | ||
BGMWScalarMultiplier::<ProjectivePoint, Scalar, 16, 63, 32>::new( | ||
ProjectivePoint::generator(), | ||
) | ||
}) | ||
.is_err()); | ||
} | ||
} |
Oops, something went wrong.