Skip to content

Synthesis of the Amide Linked Series

Claire Littler edited this page Jul 19, 2017 · 2 revisions

Synthesis of the Amide-Linked Series

Route 1: Initial Amide Bond Formation:

It was decided (GHI121, GHI101) to pursue a route involving initial amide bond formation with the chloro-pyrazine acid shown below (OSM-S-150). This molecule is commercially available but is expensive, but there are now routes to it in the lab. Patrick and Inga planned this synthesis and then Inga completed it, as has Eduvie using the same approach (data missing in the lab notebook, but reports are available). [http://malaria.ourexperiment.org/triazolopyrazine_se/9189 Tom scaled up the Patrick/Eduvie/Inga approach and has been completed on a 15 g scale in four steps: 1 2 3 4. An assessment of the relative costs of synthesis vs. purchase was discussed (GHI163, GHI164) but not properly completed.

Synthetic Routes to the Amide Series

Sabin has successfully demonstrated an elegant alternative route to the starting pyrazine acid in one step from the methyl precursor (data).

For the subsequent coupling of the pyrazine acid with an amine, Tom and Alice have identified reliable conditions for the amide coupling using T3P that worked much better than an attempt to go via the acid chloride. There was an analysis of commercially-available primary and secondary amines that could be employed, the likely physical properties of the resulting compounds as well as an analysis of those amines available locally.

Hydrazone synthesis was surveyed by Inga) and is working reliably. (Discussion about making hydrazone first, then coupling with pyrazine: GHI152) Following work by Jo Ubels on optimizing the cyclization step for the ether series (above), hypervalent iodide PIDA may now be used to form the triazolopyrazine, as in this example.

Route 2: Carbonylation An efficient alternative synthetic approach would be to use the same chloro-triazolopyrazine core as for the ether series (above) and invent a new carbonylation method to introduce the amide as the final sequence (GHI101, GHI126, Inga's lit survey, Alice's original appeal for a collaborator, a summary of the associated discussion, Alice's framing of the relevant reactions (GHI205) and Tom's lit survey. The most recent results (GHI259) indicate there is a significant competing SNAr reaction when an alcohol was used as a nucleophile. The most recent reaction to date in this series was in Sept 2014.

Background

What is OSM Series 4?

Aims, Concerns and Current Interest in Series 4

Sources of Data

Structure-Activity Relationships

Modification of Core Triazolopyrazine

Modification of Pyrazine Substitution Pattern

Modification of the Triazole Substitution

Pyrazine Side Chain Modifications - Ethers

Pyrazine Side Chain Modifications - Amides

Pyrazine Side Chain Modifications - Reversed Amides

Pyrazine Side Chain Modifications - Others

Metabolites

Biological Data Currently not Incorporated into the Main Wiki Sections

Physicochemical/Metabolic Parameters

Physicochem/metabolism/PK

Metabolism ID

Aldehyde Oxidase Assay

Stages and Efficacy

Liver Stage

Gametocyte Stage

In Vivo Efficacy

Potency vs. Resistant Strains

Other Observations

Mechanism of Action, Activity and Toxicity

Mechanism of Action: Possible PfATP4 Activity Deduced from Parasite Ion Regulation Assays

hERG Activity

Toxicity

Synthetic Chemistry

Synthetic Design

Synthesis of the Ether-Linked Series

Synthesis of the Amide-Linked Series

Synthesis of the Reverse Amide- Linked Series

Synthesis of Benzylic Functionalised Ether-Linked Series

Alternative Routes to the Triazolopyrazine Core

Triazolopyrazine telesubstitution

Biofunctionalisation

Late Stage Functionalisation

Fluoroalkene Isostere

Spectroscopy

Chirality, Relevant and Desirable Compounds

Chirality/Stereogenic Centres in This Series

Other Sources of Compounds Relevant to this Series

Desirable Compounds Not Yet Synthesised

Other Evaluations

Evaluations vs Other Organisms

Strings

Strings for Google

Clone this wiki locally