Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Add Op UnitTest For Max/Mod/Multiply #1482

Merged
merged 32 commits into from
Jun 25, 2023
Merged
Show file tree
Hide file tree
Changes from 26 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
274 changes: 222 additions & 52 deletions python/tests/ops/test_max_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper
import paddle
import paddle.nn.functional as F
import cinn
from cinn.frontend import *
from cinn.common import *

Expand All @@ -28,81 +25,254 @@
"x86 test will be skipped due to timeout.")
class TestMaxOp(OpTest):
def setUp(self):
self.init_case()
print(f"\nRunning {self.__class__.__name__}: {self.case}")
self.prepare_inputs()

def init_case(self):
self.inputs = {
"x": np.random.random((16, 64)).astype("float32"),
"y": np.random.random((16, 64)).astype("float32")
}
def prepare_inputs(self):
self.x_np = self.random(
shape=self.case["x_shape"],
dtype=self.case["x_dtype"],
low=self.case["x_low"],
high=self.case["x_high"])
self.y_np = self.random(
shape=self.case["y_shape"],
dtype=self.case["y_dtype"],
low=self.case["y_low"],
high=self.case["y_high"])

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=False)
y = paddle.to_tensor(self.inputs["y"], stop_gradient=False)

x = paddle.to_tensor(self.x_np, stop_gradient=True)
y = paddle.to_tensor(self.y_np, stop_gradient=True)
out = paddle.maximum(x, y)

self.paddle_outputs = [out]

def build_cinn_program(self, target):
builder = NetBuilder("pow")
x = builder.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x")
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"],
"x")
y = builder.create_input(
self.nptype2cinntype(self.inputs["y"].dtype),
self.inputs["y"].shape, "y")
self.nptype2cinntype(self.case["y_dtype"]), self.case["y_shape"],
"y")
out = builder.max(x, y)

prog = builder.build()
res = self.get_cinn_output(prog, target, [x, y],
[self.inputs["x"], self.inputs["y"]], [out])
[self.x_np, self.y_np], [out])

self.cinn_outputs = [res[0]]

def test_check_results(self):
self.check_outputs_and_grads()
max_relative_error = self.case[
"max_relative_error"] if "max_relative_error" in self.case else 1e-5
self.check_outputs_and_grads(max_relative_error=max_relative_error)


@OpTestTool.skip_if(not is_compiled_with_cuda(),
"x86 test will be skipped due to timeout.")
class TestMinOp(OpTest):
def setUp(self):
self.init_case()
class TestMaxOpBase(TestCaseHelper):

def init_case(self):
self.inputs = {
"x": np.random.random((16, 64)).astype("float32"),
"y": np.random.random((16, 64)).astype("float32")
}
inputs = [
{
"x_shape": [1],
"y_shape": [1],
},
{
"x_shape": [32, 64],
"y_shape": [32, 64],
},
{
"x_shape": [2, 3, 4],
"y_shape": [2, 3, 4],
},
{
"x_shape": [16, 8, 4, 2],
"y_shape": [16, 8, 4, 2],
},
{
"x_shape": [16, 8, 4, 2, 1],
"y_shape": [16, 8, 4, 2, 1],
},
]

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=False)
y = paddle.to_tensor(self.inputs["y"], stop_gradient=False)
dtypes = [
{
"x_dtype": "float32",
"y_dtype": "float32",
},
]

out = paddle.minimum(x, y)
attrs = [
{
"x_low": -100,
"x_high": 100,
"y_low": -100,
"y_high": 100
},
]

self.paddle_outputs = [out]
def init_attrs(self):
self.class_name = "TestMaxOpBase"
self.cls = TestMaxOp

def build_cinn_program(self, target):
builder = NetBuilder("pow")
x = builder.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x")
y = builder.create_input(
self.nptype2cinntype(self.inputs["y"].dtype),
self.inputs["y"].shape, "y")
out = builder.min(x, y)

prog = builder.build()
res = self.get_cinn_output(prog, target, [x, y],
[self.inputs["x"], self.inputs["y"]], [out])
class TestMaxOpShapeTest(TestMaxOpBase):
def init_attrs(self):
self.class_name = "TestMaxOpShapeTest"
self.cls = TestMaxOp
self.inputs = [{
"x_shape": [1],
"y_shape": [1],
}, {
"x_shape": [1024],
"y_shape": [1024],
}, {
"x_shape": [2048],
"y_shape": [2048],
}, {
"x_shape": [32, 64],
"y_shape": [32, 64],
}, {
"x_shape": [2, 3, 4],
"y_shape": [2, 3, 4],
}, {
"x_shape": [16, 8, 4, 2],
"y_shape": [16, 8, 4, 2],
}, {
"x_shape": [16, 8, 4, 1024],
"y_shape": [16, 8, 4, 1024],
}, {
"x_shape": [16, 8, 4, 2, 1],
"y_shape": [16, 8, 4, 2, 1],
}, {
"x_shape": [1, 1, 1, 1, 1],
"y_shape": [1, 1, 1, 1, 1],
}]

self.cinn_outputs = [res[0]]

def test_check_results(self):
self.check_outputs_and_grads()
class TestMaxOpDtypeTest(TestMaxOpBase):
def init_attrs(self):
self.class_name = "TestMaxOpDtypeTest"
self.cls = TestMaxOp
self.dtypes = [
#{
#"x_dtype": "int8",
#"y_dtype": "int8",
#}, {
#"x_dtype": "int16",
#"y_dtype": "int16",
#}, {
#"x_dtype": "uint8",
#"y_dtype": "uint8",
#}, {
#"x_dtype": "uint16",
#"y_dtype": "uint16",
#},
{
"x_dtype": "int32",
"y_dtype": "int32",
},
{
"x_dtype": "int64",
"y_dtype": "int64",
},
#{
# "x_dtype": "float16",
# "y_dtype": "float16",
# "max_relative_error": 1e-3,
#},
{
"x_dtype": "float32",
"y_dtype": "float32",
},
{
"x_dtype": "float64",
"y_dtype": "float64",
}
]


class TestMaxOpPolarityTest(TestMaxOpBase):
def init_attrs(self):
self.class_name = "TestMaxOpPolarityTest"
self.cls = TestMaxOp
self.attrs = [{
"x_low": -100,
"x_high": 100,
"y_low": -100,
"y_high": 100,
}]


class TestMaxOpBroadcastTest(TestMaxOpBase):
def init_attrs(self):
self.class_name = "TestMaxOpBroadcastTest"
self.cls = TestMaxOp
self.inputs = [{
"x_shape": [32],
"y_shape": [1],
}, {
"x_shape": [1],
"y_shape": [32],
}, {
"x_shape": [1, 64],
"y_shape": [32, 1],
}, {
"x_shape": [1, 64],
"y_shape": [32, 64],
}, {
"x_shape": [32, 1],
"y_shape": [32, 64],
}, {
"x_shape": [1, 1],
"y_shape": [32, 64],
}, {
"x_shape": [1, 3, 4],
"y_shape": [2, 3, 4],
}, {
"x_shape": [1, 3, 1],
"y_shape": [2, 3, 4],
}, {
"x_shape": [1, 1, 1],
"y_shape": [2, 3, 4],
}, {
"x_shape": [2, 1, 1],
"y_shape": [1, 3, 4],
}, {
"x_shape": [1, 8, 4, 2],
"y_shape": [16, 8, 4, 2],
}, {
"x_shape": [16, 8, 1, 1],
"y_shape": [16, 8, 4, 2],
}, {
"x_shape": [1, 8, 1, 1],
"y_shape": [16, 8, 4, 2],
}, {
"x_shape": [1, 1, 1, 1],
"y_shape": [16, 8, 4, 2],
}, {
"x_shape": [1, 8, 1, 2],
"y_shape": [16, 1, 4, 1],
}, {
"x_shape": [1, 8, 4, 2, 32],
"y_shape": [16, 8, 4, 2, 32],
}, {
"x_shape": [16, 1, 1, 2, 32],
"y_shape": [16, 8, 4, 2, 32],
}, {
"x_shape": [16, 1, 4, 1, 1],
"y_shape": [16, 8, 4, 2, 32],
}, {
"x_shape": [1, 1, 1, 1, 32],
"y_shape": [16, 8, 4, 2, 32],
}, {
"x_shape": [1, 1, 1, 1, 1],
"y_shape": [16, 8, 4, 2, 32],
}, {
"x_shape": [16, 1, 4, 1, 32],
"y_shape": [1, 8, 1, 2, 1],
}]


if __name__ == "__main__":
unittest.main()
TestMaxOpShapeTest().run()
TestMaxOpDtypeTest().run()
TestMaxOpPolarityTest().run()
TestMaxOpBroadcastTest().run()
Loading