-
Notifications
You must be signed in to change notification settings - Fork 223
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add SWA #519
Merged
Merged
Add SWA #519
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -166,6 +166,9 @@ def _setup_server(self, resource_info=None, client_resource_info=None): | |
if self.cfg.vertical.use: | ||
from federatedscope.vertical_fl.utils import wrap_vertical_server | ||
server = wrap_vertical_server(server, self.cfg) | ||
if self.cfg.fedswa.use: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This implementation implies that, in the future, we'd better refactor the workers so that we would not need to make another worker class just for adding such a trick. |
||
from federatedscope.core.workers.wrapper import wrap_swa_server | ||
server = wrap_swa_server(server) | ||
logger.info('Server has been set up ... ') | ||
return self.feat_engr_wrapper_server(server) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from federatedscope.core.workers.wrapper.fedswa import wrap_swa_server | ||
|
||
__all__ = ['wrap_swa_server'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
import types | ||
import logging | ||
|
||
from federatedscope.core.message import Message | ||
from federatedscope.core.auxiliaries.utils import merge_dict_of_results | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def wrap_swa_server(server): | ||
def check_and_move_on(self, | ||
check_eval_result=False, | ||
min_received_num=None): | ||
if min_received_num is None: | ||
if self._cfg.asyn.use: | ||
min_received_num = self._cfg.asyn.min_received_num | ||
else: | ||
min_received_num = self._cfg.federate.sample_client_num | ||
assert min_received_num <= self.sample_client_num | ||
|
||
if check_eval_result and self._cfg.federate.mode.lower( | ||
) == "standalone": | ||
# in evaluation stage and standalone simulation mode, we assume | ||
# strong synchronization that receives responses from all clients | ||
min_received_num = len(self.comm_manager.get_neighbors().keys()) | ||
|
||
move_on_flag = True # To record whether moving to a new training | ||
# round or finishing the evaluation | ||
if self.check_buffer(self.state, min_received_num, check_eval_result): | ||
if not check_eval_result: | ||
# Receiving enough feedback in the training process | ||
aggregated_num = self._perform_federated_aggregation() | ||
|
||
self.state += 1 | ||
|
||
# FedSWA cache model | ||
if self.state == self._cfg.fedswa.start_rnd: | ||
self.swa_models_ws = [ | ||
model.state_dict() for model in self.models | ||
] | ||
self.swa_rnd = 1 | ||
elif self.state > \ | ||
self._cfg.fedswa.start_rnd and \ | ||
(self.state - self._cfg.fedswa.start_rnd) % \ | ||
self._cfg.fedswa.freq == 0: | ||
logger.info(f'FedSWA cache {self.swa_rnd} models.') | ||
for model, new_model in zip(self.swa_models_ws, | ||
self.models): | ||
new_model = new_model.state_dict() | ||
for key in model.keys(): | ||
model[key] = (model[key] * self.swa_rnd + | ||
new_model[key]) / (self.swa_rnd + 1) | ||
self.swa_rnd += 1 | ||
|
||
if self.state % self._cfg.eval.freq == 0 and self.state != \ | ||
self.total_round_num: | ||
# Evaluate | ||
logger.info(f'Server: Starting evaluation at the end ' | ||
f'of round {self.state - 1}.') | ||
self.eval() | ||
|
||
if self.state < self.total_round_num: | ||
# Move to next round of training | ||
logger.info( | ||
f'----------- Starting a new training round (Round ' | ||
f'#{self.state}) -------------') | ||
# Clean the msg_buffer | ||
self.msg_buffer['train'][self.state - 1].clear() | ||
self.msg_buffer['train'][self.state] = dict() | ||
self.staled_msg_buffer.clear() | ||
# Start a new training round | ||
self._start_new_training_round(aggregated_num) | ||
else: | ||
# Final Evaluate | ||
logger.info('Server: Training is finished! Starting ' | ||
'evaluation.') | ||
self.eval() | ||
|
||
else: | ||
# Receiving enough feedback in the evaluation process | ||
self._merge_and_format_eval_results() | ||
|
||
else: | ||
move_on_flag = False | ||
|
||
return move_on_flag | ||
|
||
def eval(self): | ||
if self._cfg.federate.make_global_eval: | ||
for i in range(self.model_num): | ||
trainer = self.trainers[i] | ||
|
||
if self.eval_swa: | ||
# Use swa model | ||
fedavg_model_w = self.models[i].state_dict() | ||
self.models[i].load_state_dict(self.swa_models_ws[i]) | ||
|
||
# Preform evaluation in server | ||
metrics = {} | ||
for split in self._cfg.eval.split: | ||
eval_metrics = trainer.evaluate( | ||
target_data_split_name=split) | ||
metrics.update(**eval_metrics) | ||
|
||
formatted_eval_res = self._monitor.format_eval_res( | ||
metrics, | ||
rnd=self.state, | ||
role='Server SWA#' if self.eval_swa else 'Server #', | ||
forms=self._cfg.eval.report, | ||
return_raw=self._cfg.federate.make_global_eval) | ||
|
||
if self.eval_swa: | ||
# Restore | ||
self.models[i].load_state_dict(fedavg_model_w) | ||
self.best_results = formatted_eval_res['Results_raw'] | ||
else: | ||
self._monitor.update_best_result( | ||
self.best_results, | ||
formatted_eval_res['Results_raw'], | ||
results_type="server_global_eval") | ||
self.history_results = merge_dict_of_results( | ||
self.history_results, formatted_eval_res) | ||
self._monitor.save_formatted_results(formatted_eval_res) | ||
logger.info(formatted_eval_res) | ||
self.check_and_save() | ||
else: | ||
if self.eval_swa: | ||
for i in range(self.model_num): | ||
# Use swa model | ||
fedavg_model_w = self.models[i].state_dict() | ||
self.models[i].load_state_dict(self.swa_models_ws[i]) | ||
# Preform evaluation in clients | ||
self.broadcast_model_para(msg_type='evaluate', | ||
filter_unseen_clients=False) | ||
|
||
if self.eval_swa: | ||
for i in range(self.model_num): | ||
self.models[i].load_state_dict(fedavg_model_w) | ||
|
||
def check_and_save(self): | ||
""" | ||
To save the results and save model after each evaluation, and check \ | ||
whether to early stop. | ||
""" | ||
|
||
# early stopping | ||
if "Results_weighted_avg" in self.history_results and \ | ||
self._cfg.eval.best_res_update_round_wise_key in \ | ||
self.history_results['Results_weighted_avg']: | ||
should_stop = self.early_stopper.track_and_check( | ||
self.history_results['Results_weighted_avg'][ | ||
self._cfg.eval.best_res_update_round_wise_key]) | ||
elif "Results_avg" in self.history_results and \ | ||
self._cfg.eval.best_res_update_round_wise_key in \ | ||
self.history_results['Results_avg']: | ||
should_stop = self.early_stopper.track_and_check( | ||
self.history_results['Results_avg'][ | ||
self._cfg.eval.best_res_update_round_wise_key]) | ||
else: | ||
should_stop = False | ||
|
||
if should_stop: | ||
self._monitor.global_converged() | ||
self.comm_manager.send( | ||
Message( | ||
msg_type="converged", | ||
sender=self.ID, | ||
receiver=list(self.comm_manager.neighbors.keys()), | ||
timestamp=self.cur_timestamp, | ||
state=self.state, | ||
)) | ||
self.state = self.total_round_num + 1 | ||
|
||
if should_stop or self.state >= self.total_round_num: | ||
logger.info('Server: Final evaluation is finished! Starting ' | ||
'merging results.') | ||
# last round or early stopped | ||
self.save_best_results() | ||
if not self._cfg.federate.make_global_eval: | ||
self.save_client_eval_results() | ||
|
||
if self.eval_swa: | ||
self.terminate(msg_type='finish') | ||
else: | ||
self.eval_swa = True | ||
logger.info('Server: Evaluation with FedSWA') | ||
self.eval() | ||
|
||
# Clean the clients evaluation msg buffer | ||
if not self._cfg.federate.make_global_eval: | ||
round = max(self.msg_buffer['eval'].keys()) | ||
self.msg_buffer['eval'][round].clear() | ||
|
||
if self.state == self.total_round_num: | ||
# break out the loop for distributed mode | ||
self.state += 1 | ||
|
||
def save_best_results(self): | ||
""" | ||
To Save the best evaluation results. | ||
""" | ||
if self._cfg.federate.save_to != '': | ||
self.aggregator.save_model(self._cfg.federate.save_to, self.state) | ||
formatted_best_res = self._monitor.format_eval_res( | ||
results=self.best_results, | ||
rnd="Final", | ||
role='Server SWA#' if self.eval_swa else 'Server #', | ||
forms=["raw"], | ||
return_raw=True) | ||
logger.info(formatted_best_res) | ||
self._monitor.save_formatted_results(formatted_best_res) | ||
|
||
# Bind method to instance | ||
setattr(server, 'eval_swa', False) | ||
server.check_and_move_on = types.MethodType(check_and_move_on, server) | ||
server.eval = types.MethodType(eval, server) | ||
server.check_and_save = types.MethodType(check_and_save, server) | ||
server.save_best_results = types.MethodType(save_best_results, server) | ||
|
||
return server |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
use_gpu: True | ||
device: 0 | ||
early_stop: | ||
patience: 5 | ||
seed: 12345 | ||
federate: | ||
mode: standalone | ||
total_round_num: 100 | ||
sample_client_rate: 0.1 | ||
make_global_eval: True | ||
merge_test_data: True | ||
merge_val_data: True | ||
fedswa: | ||
use: True | ||
freq: 10 | ||
start_rnd: 75 | ||
data: | ||
root: data/ | ||
type: femnist | ||
splits: [0.6,0.2,0.2] | ||
subsample: 0.05 | ||
transform: [['ToTensor'], ['Normalize', {'mean': [0.9637], 'std': [0.1592]}]] | ||
dataloader: | ||
batch_size: 10 | ||
model: | ||
type: convnet2 | ||
hidden: 2048 | ||
out_channels: 62 | ||
train: | ||
local_update_steps: 1 | ||
batch_or_epoch: epoch | ||
optimizer: | ||
lr: 0.01 | ||
weight_decay: 0.0 | ||
grad: | ||
grad_clip: 5.0 | ||
criterion: | ||
type: CrossEntropyLoss | ||
trainer: | ||
type: cvtrainer | ||
eval: | ||
freq: 10 | ||
metrics: ['acc', 'correct'] | ||
count_flops: False |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I am wondering whether it is appropriate to put SWA here. It is not an FL algorithm but just a trick to produce another solution from those in the late stage of a training course.