Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: update machine learning models download intructions #589

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 14 additions & 86 deletions docs/models/index.md
Original file line number Diff line number Diff line change
@@ -1,103 +1,31 @@
# Machine learning models

The Autoware perception stack uses models for inference. These models are automatically downloaded if using `ansible`, but they can also be downloaded manually.
The Autoware perception stack uses models for inference. These models are automatically downloaded as part of the `setup-dev-env.sh` script.

## ONNX model files
The models are hosted by Web.Auto.

### Download instructions
Default models directory (`data_dir`) is `~/autoware_data`.

The ONNX model files are stored in a common location, hosted by Web.Auto
## Download instructions

Any tool that can download files from the web (e.g. `wget` or `curl`) is the only requirement for downloading these files:

```console
# yabloc_pose_initializer

$ mkdir -p ~/autoware_data/yabloc_pose_initializer/
$ wget -P ~/autoware_data/yabloc_pose_initializer/ \
https://s3.ap-northeast-2.wasabisys.com/pinto-model-zoo/136_road-segmentation-adas-0001/resources.tar.gz


# image_projection_based_fusion

$ mkdir -p ~/autoware_data/image_projection_based_fusion/
$ wget -P ~/autoware_data/image_projection_based_fusion/ \
https://awf.ml.dev.web.auto/perception/models/pointpainting/v4/pts_voxel_encoder_pointpainting.onnx \
https://awf.ml.dev.web.auto/perception/models/pointpainting/v4/pts_backbone_neck_head_pointpainting.onnx
Please follow the download instruction in [autoware download instructions](https://github.com/autowarefoundation/autoware/blob/main/ansible/roles/artifacts/README.md#L15) for updated models downloading.

The models can be also downloaded manually using download tools such as `wget` or `curl`. The latest urls of weight files and param files for each model can be found at [autoware main.yaml file](https://github.com/autowarefoundation/autoware/blob/main/ansible/roles/artifacts/tasks/main.yaml)

# lidar_apollo_instance_segmentation

$ mkdir -p ~/autoware_data/lidar_apollo_instance_segmentation/
$ wget -P ~/autoware_data/lidar_apollo_instance_segmentation/ \
https://awf.ml.dev.web.auto/perception/models/lidar_apollo_instance_segmentation/vlp-16.onnx \
https://awf.ml.dev.web.auto/perception/models/lidar_apollo_instance_segmentation/hdl-64.onnx \
https://awf.ml.dev.web.auto/perception/models/lidar_apollo_instance_segmentation/vls-128.onnx

The example of downloading `lidar_centerpoint` model:

```console
# lidar_centerpoint

$ mkdir -p ~/autoware_data/lidar_centerpoint/
$ wget -P ~/autoware_data/lidar_centerpoint/ \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_voxel_encoder_centerpoint.onnx \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_backbone_neck_head_centerpoint.onnx \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_voxel_encoder_centerpoint_tiny.onnx \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_backbone_neck_head_centerpoint_tiny.onnx


# tensorrt_yolo

$ mkdir -p ~/autoware_data/tensorrt_yolo/
$ wget -P ~/autoware_data/tensorrt_yolo/ \
https://awf.ml.dev.web.auto/perception/models/yolov3.onnx \
https://awf.ml.dev.web.auto/perception/models/yolov4.onnx \
https://awf.ml.dev.web.auto/perception/models/yolov4-tiny.onnx \
https://awf.ml.dev.web.auto/perception/models/yolov5s.onnx \
https://awf.ml.dev.web.auto/perception/models/yolov5m.onnx \
https://awf.ml.dev.web.auto/perception/models/yolov5l.onnx \
https://awf.ml.dev.web.auto/perception/models/yolov5x.onnx \
https://awf.ml.dev.web.auto/perception/models/coco.names


# tensorrt_yolox

$ mkdir -p ~/autoware_data/tensorrt_yolox/
$ wget -P ~/autoware_data/tensorrt_yolox/ \
https://awf.ml.dev.web.auto/perception/models/yolox-tiny.onnx \
https://awf.ml.dev.web.auto/perception/models/yolox-sPlus-opt.onnx \
https://awf.ml.dev.web.auto/perception/models/yolox-sPlus-opt.EntropyV2-calibration.table \
https://awf.ml.dev.web.auto/perception/models/object_detection_yolox_s/v1/yolox-sPlus-T4-960x960-pseudo-finetune.onnx \
https://awf.ml.dev.web.auto/perception/models/object_detection_yolox_s/v1/yolox-sPlus-T4-960x960-pseudo-finetune.EntropyV2-calibration.table \
https://awf.ml.dev.web.auto/perception/models/label.txt


# traffic_light_classifier

$ mkdir -p ~/autoware_data/traffic_light_classifier/
$ wget -P ~/autoware_data/traffic_light_classifier/ \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_mobilenetv2_batch_1.onnx \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_mobilenetv2_batch_4.onnx \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_mobilenetv2_batch_6.onnx \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_efficientNet_b1_batch_1.onnx \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_efficientNet_b1_batch_4.onnx \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/traffic_light_classifier_efficientNet_b1_batch_6.onnx \
https://awf.ml.dev.web.auto/perception/models/traffic_light_classifier/v2/lamp_labels.txt


# traffic_light_fine_detector

$ mkdir -p ~/autoware_data/traffic_light_fine_detector/
$ wget -P ~/autoware_data/traffic_light_fine_detector/ \
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v2/tlr_yolox_s_batch_1.onnx \
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v2/tlr_yolox_s_batch_4.onnx \
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v2/tlr_yolox_s_batch_6.onnx \
https://awf.ml.dev.web.auto/perception/models/tlr_yolox_s/v2/tlr_labels.txt


# traffic_light_ssd_fine_detector

$ mkdir -p ~/autoware_data/traffic_light_ssd_fine_detector/
$ wget -P ~/autoware_data/traffic_light_ssd_fine_detector/ \
https://awf.ml.dev.web.auto/perception/models/mb2-ssd-lite-tlr.onnx \
https://awf.ml.dev.web.auto/perception/models/voc_labels_tl.txt
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/pts_backbone_neck_head_centerpoint_tiny.onnx \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/centerpoint_ml_package.param.yaml \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/centerpoint_tiny_ml_package.param.yaml \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/centerpoint_sigma_ml_package.param.yaml \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/detection_class_remapper.param.yaml \
https://awf.ml.dev.web.auto/perception/models/centerpoint/v2/deploy_metadata.yaml
```
Loading