Skip to content
This repository has been archived by the owner on Dec 1, 2021. It is now read-only.

Enhance the dataset class to accept the dataset in PASCALVOC format with configuration. #1140

Merged
merged 8 commits into from
Aug 3, 2020
66 changes: 66 additions & 0 deletions blueoil/datasets/pascalvoc_custom.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# Copyright 2020 The Blueoil Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import os

from blueoil.datasets.pascalvoc_base import PascalvocBase


class PascalVOCCustom(PascalvocBase):
classes = []
available_subsets = []
extend_dir = ""

def __init__(self, classes, available_subsets, extend_dir, *args, **kwargs):
PascalVOCCustom.classes = classes
PascalVOCCustom.available_subsets = available_subsets
PascalVOCCustom.extend_dir = extend_dir
super().__init__(*args, **kwargs)

@property
def num_max_boxes(self):
# Took from pascalvoc_2007.py
if self.skip_difficult:
return 37
else:
return 42

def _annotation_file_from_image_id(self, image_id):
annotation_file = os.path.join(self.annotations_dir, "{}.xml".format(image_id))
return annotation_file

def _image_file_from_image_id(self, image_id):
"""Return image file name of a image."""
return os.path.join(self.jpegimages_dir, "{}.jpg".format(image_id))

def _files_and_annotations(self):
"""Create files and gt_boxes list."""

if self.subset == "train":
data_type = "train"

if self.subset == "validation":
data_type = "val"

if self.subset == "test":
data_type = "test"

if self.subset == "train_validation":
data_type = "trainval"

image_ids = self._image_ids(data_type)
files = [self._image_file_from_image_id(image_id) for image_id in image_ids]
gt_boxes_list = [self._gt_boxes_from_image_id(image_id) for image_id in image_ids]

return files, gt_boxes_list