forked from IBM/db2-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* added docs for using DB2 as backend for model management * fixed typos * Update In_Db2_Machine_Learning/In DB Model Deployment and Management/README.md Co-authored-by: Kelly Rodger <[email protected]> * Update In_Db2_Machine_Learning/In DB Model Deployment and Management/README.md Co-authored-by: Kelly Rodger <[email protected]> * Update In_Db2_Machine_Learning/In DB Model Deployment and Management/README.md Co-authored-by: Kelly Rodger <[email protected]> * fixed typo Co-authored-by: Kelly Rodger <[email protected]>
- Loading branch information
Showing
3 changed files
with
337 additions
and
0 deletions.
There are no files selected for viewing
337 changes: 337 additions & 0 deletions
337
In_Db2_Machine_Learning/In DB Model Deployment and Management/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,337 @@ | ||
# Procedure for using db2 as a backend for model hosting | ||
|
||
DB2's Integrated Analytics System allows for an impressive amount of user defined extensions, which can be leveraged to allow db2 to serve as a model management and scoring engine. | ||
We can store, manage, update and score models trained in scikit-learn and other python frameworks in DB2. We can also | ||
run models trained in Lua, C, R, or C++. This document will demonstrate a python based example. | ||
|
||
# DB2 Configuration | ||
|
||
We will need to store a python class for scoring a generic model in our DB2 server, and make some minor configuration changes. | ||
|
||
Log in to the db2 server. In this case the user is `db2inst1` | ||
|
||
`source ~/.bashrc; sudo su - db2inst1` | ||
|
||
Make sure there is a python3 installation in your server. | ||
|
||
`sudo yum install python3` | ||
|
||
Install scikit-learn and joblib | ||
|
||
`pip3 install scikit-learn joblib` | ||
|
||
Update db2 to use the correct python path | ||
|
||
`db2 update dbm cfg using PYTHON_PATH $(which python)` | ||
|
||
Restart the Db2 instance because PYTHON_PATH is not dynamically configurable. | ||
|
||
`db2 connect reset;` | ||
`db2stop` | ||
`db2start` | ||
|
||
Add the python class for scoring the model by writing the following python class to $DB2_HOME/function/routine/score.py | ||
|
||
|
||
``` | ||
import nzae | ||
from joblib import load | ||
from io import BytesIO | ||
import base64 | ||
class predict(nzae.Ae): | ||
def _setup(self): | ||
self.model = None | ||
def predict(self,data): | ||
model = data[0] | ||
if not self.model: | ||
self.model = load(BytesIO(base64.b64decode(model))) | ||
data = data[1:] | ||
result = self.model.predict([data]) | ||
return float(result[0]) | ||
def _getFunctionResult(self,row): | ||
price = self.predict(row) | ||
return price | ||
predict.run() | ||
``` | ||
|
||
## Model Training | ||
|
||
We will first train a simple logistic regression model on the Iris data set. We will use joblib to pickle the | ||
resulting model, and write it as a b64encoded string | ||
|
||
``` | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn import datasets | ||
import joblib | ||
import base64 | ||
train = datasets.load_iris().get("data") | ||
target = datasets.load_iris().get("target") | ||
lr = LogisticRegression(max_iter=1000) | ||
lr = lr.fit(train, target) | ||
joblib.dump(lr, "lr.joblib") | ||
with open("lr.joblib", "rb") as file: | ||
file = file.read() | ||
b64model = base64.b64encode(file) | ||
print(b64model) | ||
with open("model.b64", "wb") as file: | ||
file.write(b64model) | ||
``` | ||
|
||
## Model Deployment | ||
|
||
We need a table to store the model. | ||
|
||
``` | ||
create table models(id integer not null generated always as identity, name varchar(30), model clob, primary key(id)) | ||
``` | ||
|
||
We can now store our model as a b64encoded string in the models table. | ||
|
||
|
||
`db2 "insert into models (name, model) values('iris_lr', 'gANjc2tsZWFybi5saW5lYXJfbW9kZWwuX2xvZ2lzdGljCkxvZ2lzdGljUmVncmVzc2lvbgpxACmBcQF9cQIoWAcAAABwZW5hbHR5cQNYAgAAAGwycQRYBAAAAGR1YWxxBYlYAwAAAHRvbHEGRz8aNuLrHEMtWAEAAABDcQdHP/AAAAAAAABYDQAAAGZpdF9pbnRlcmNlcHRxCIhYEQAAAGludGVyY2VwdF9zY2FsaW5ncQlLAVgMAAAAY2xhc3Nfd2VpZ2h0cQpOWAwAAAByYW5kb21fc3RhdGVxC05YBgAAAHNvbHZlcnEMWAUAAABsYmZnc3ENWAgAAABtYXhfaXRlcnEOTegDWAsAAABtdWx0aV9jbGFzc3EPWAQAAABhdXRvcRBYBwAAAHZlcmJvc2VxEUsAWAoAAAB3YXJtX3N0YXJ0cRKJWAYAAABuX2pvYnNxE05YCAAAAGwxX3JhdGlvcRROWA4AAABuX2ZlYXR1cmVzX2luX3EVSwRYCAAAAGNsYXNzZXNfcRZjam9ibGliLm51bXB5X3BpY2tsZQpOdW1weUFycmF5V3JhcHBlcgpxFymBcRh9cRkoWAgAAABzdWJjbGFzc3EaY251bXB5Cm5kYXJyYXkKcRtYBQAAAHNoYXBlcRxLA4VxHVgFAAAAb3JkZXJxHmgHWAUAAABkdHlwZXEfY251bXB5CmR0eXBlCnEgWAIAAABpOHEhiYiHcSJScSMoSwNYAQAAADxxJE5OTkr/////Sv////9LAHRxJWJYCgAAAGFsbG93X21tYXBxJoh1YgAAAAAAAAAAAQAAAAAAAAACAAAAAAAAAFgHAAAAbl9pdGVyX3EnaBcpgXEofXEpKGgaaBtoHEsBhXEqaB5oB2gfaCBYAgAAAGk0cSuJiIdxLFJxLShLA2gkTk5OSv////9K/////0sAdHEuYmgmiHVieAAAAFgFAAAAY29lZl9xL2gXKYFxMH1xMShoGmgbaBxLA0sEhnEyaB5oB2gfaCBYAgAAAGY4cTOJiIdxNFJxNShLA2gkTk5OSv////9K/////0sAdHE2YmgmiHVij1QYxRMZ278kWkhF2PTuP6rSkjvrIgTAaHLQY1VE8b8t3ELIwxrhP96DvoMnmtS/jiBwUXptyr84Vo+N6zjuv1uTtS3Pcby/DBhpg8Sn5L+u1KngwskFQFMOTJVlMABAWAoAAABpbnRlcmNlcHRfcTdoFymBcTh9cTkoaBpoG2gcSwOFcTpoHmgHaB9oNWgmiHVidKGKloayI0Ci4JR+q+cBQDDaL3ZxLCjAWBAAAABfc2tsZWFybl92ZXJzaW9ucTtYBQAAADEuMC4ycTx1Yi4=')"` | ||
|
||
Then we register a UDF (User defined function) that references the python class. | ||
|
||
``` | ||
CREATE FUNCTION iris_score(varchar(1356), float, float, float, float) \ | ||
returns float LANGUAGE PYTHON parameter style \ | ||
NPSGENERIC FENCED NOT THREADSAFE NO FINAL CALL ALLOW PARALLEL NO DBINFO DETERMINISTIC NO EXTERNAL ACTION \ | ||
RETURNS NULL ON NULL INPUT NO SQL \ | ||
external name '/database/config/db2inst1/sqllib/function/routine/score.py' | ||
``` | ||
Lets create a table for testing. | ||
|
||
|
||
``` | ||
CREATE TABLE iris( | ||
sepal_length float | ||
,sepal_width float | ||
,petal_length float | ||
,petal_width float | ||
,iris varchar(255) | ||
); | ||
INSERT INTO iris | ||
VALUES | ||
(5.1,3.5,1.4,0.2,'setosa'), | ||
(4.9,3,1.4,0.2,'setosa'), | ||
(4.7,3.2,1.3,0.2,'setosa'), | ||
(4.6,3.1,1.5,0.2,'setosa'), | ||
(5,3.6,1.4,0.2,'setosa'), | ||
(5.4,3.9,1.7,0.4,'setosa'), | ||
(4.6,3.4,1.4,0.3,'setosa'), | ||
(5,3.4,1.5,0.2,'setosa'), | ||
(4.4,2.9,1.4,0.2,'setosa'), | ||
(4.9,3.1,1.5,0.1,'setosa'), | ||
(5.4,3.7,1.5,0.2,'setosa'), | ||
(4.8,3.4,1.6,0.2,'setosa'), | ||
(4.8,3,1.4,0.1,'setosa'), | ||
(4.3,3,1.1,0.1,'setosa'), | ||
(5.8,4,1.2,0.2,'setosa'), | ||
(5.7,4.4,1.5,0.4,'setosa'), | ||
(5.4,3.9,1.3,0.4,'setosa'), | ||
(5.1,3.5,1.4,0.3,'setosa'), | ||
(5.7,3.8,1.7,0.3,'setosa'), | ||
(5.1,3.8,1.5,0.3,'setosa'), | ||
(5.4,3.4,1.7,0.2,'setosa'), | ||
(5.1,3.7,1.5,0.4,'setosa'), | ||
(4.6,3.6,1,0.2,'setosa'), | ||
(5.1,3.3,1.7,0.5,'setosa'), | ||
(4.8,3.4,1.9,0.2,'setosa'), | ||
(5,3,1.6,0.2,'setosa'), | ||
(5,3.4,1.6,0.4,'setosa'), | ||
(5.2,3.5,1.5,0.2,'setosa'), | ||
(5.2,3.4,1.4,0.2,'setosa'), | ||
(4.7,3.2,1.6,0.2,'setosa'), | ||
(4.8,3.1,1.6,0.2,'setosa'), | ||
(5.4,3.4,1.5,0.4,'setosa'), | ||
(5.2,4.1,1.5,0.1,'setosa'), | ||
(5.5,4.2,1.4,0.2,'setosa'), | ||
(4.9,3.1,1.5,0.1,'setosa'), | ||
(5,3.2,1.2,0.2,'setosa'), | ||
(5.5,3.5,1.3,0.2,'setosa'), | ||
(4.9,3.1,1.5,0.1,'setosa'), | ||
(4.4,3,1.3,0.2,'setosa'), | ||
(5.1,3.4,1.5,0.2,'setosa'), | ||
(5,3.5,1.3,0.3,'setosa'), | ||
(4.5,2.3,1.3,0.3,'setosa'), | ||
(4.4,3.2,1.3,0.2,'setosa'), | ||
(5,3.5,1.6,0.6,'setosa'), | ||
(5.1,3.8,1.9,0.4,'setosa'), | ||
(4.8,3,1.4,0.3,'setosa'), | ||
(5.1,3.8,1.6,0.2,'setosa'), | ||
(4.6,3.2,1.4,0.2,'setosa'), | ||
(5.3,3.7,1.5,0.2,'setosa'), | ||
(5,3.3,1.4,0.2,'setosa'), | ||
(7,3.2,4.7,1.4,'versicolor'), | ||
(6.4,3.2,4.5,1.5,'versicolor'), | ||
(6.9,3.1,4.9,1.5,'versicolor'), | ||
(5.5,2.3,4,1.3,'versicolor'), | ||
(6.5,2.8,4.6,1.5,'versicolor'), | ||
(5.7,2.8,4.5,1.3,'versicolor'), | ||
(6.3,3.3,4.7,1.6,'versicolor'), | ||
(4.9,2.4,3.3,1,'versicolor'), | ||
(6.6,2.9,4.6,1.3,'versicolor'), | ||
(5.2,2.7,3.9,1.4,'versicolor'), | ||
(5,2,3.5,1,'versicolor'), | ||
(5.9,3,4.2,1.5,'versicolor'), | ||
(6,2.2,4,1,'versicolor'), | ||
(6.1,2.9,4.7,1.4,'versicolor'), | ||
(5.6,2.9,3.6,1.3,'versicolor'), | ||
(6.7,3.1,4.4,1.4,'versicolor'), | ||
(5.6,3,4.5,1.5,'versicolor'), | ||
(5.8,2.7,4.1,1,'versicolor'), | ||
(6.2,2.2,4.5,1.5,'versicolor'), | ||
(5.6,2.5,3.9,1.1,'versicolor'), | ||
(5.9,3.2,4.8,1.8,'versicolor'), | ||
(6.1,2.8,4,1.3,'versicolor'), | ||
(6.3,2.5,4.9,1.5,'versicolor'), | ||
(6.1,2.8,4.7,1.2,'versicolor'), | ||
(6.4,2.9,4.3,1.3,'versicolor'), | ||
(6.6,3,4.4,1.4,'versicolor'), | ||
(6.8,2.8,4.8,1.4,'versicolor'), | ||
(6.7,3,5,1.7,'versicolor'), | ||
(6,2.9,4.5,1.5,'versicolor'), | ||
(5.7,2.6,3.5,1,'versicolor'), | ||
(5.5,2.4,3.8,1.1,'versicolor'), | ||
(5.5,2.4,3.7,1,'versicolor'), | ||
(5.8,2.7,3.9,1.2,'versicolor'), | ||
(6,2.7,5.1,1.6,'versicolor'), | ||
(5.4,3,4.5,1.5,'versicolor'), | ||
(6,3.4,4.5,1.6,'versicolor'), | ||
(6.7,3.1,4.7,1.5,'versicolor'), | ||
(6.3,2.3,4.4,1.3,'versicolor'), | ||
(5.6,3,4.1,1.3,'versicolor'), | ||
(5.5,2.5,4,1.3,'versicolor'), | ||
(5.5,2.6,4.4,1.2,'versicolor'), | ||
(6.1,3,4.6,1.4,'versicolor'), | ||
(5.8,2.6,4,1.2,'versicolor'), | ||
(5,2.3,3.3,1,'versicolor'), | ||
(5.6,2.7,4.2,1.3,'versicolor'), | ||
(5.7,3,4.2,1.2,'versicolor'), | ||
(5.7,2.9,4.2,1.3,'versicolor'), | ||
(6.2,2.9,4.3,1.3,'versicolor'), | ||
(5.1,2.5,3,1.1,'versicolor'), | ||
(5.7,2.8,4.1,1.3,'versicolor'), | ||
(6.3,3.3,6,2.5,'virginica'), | ||
(5.8,2.7,5.1,1.9,'virginica'), | ||
(7.1,3,5.9,2.1,'virginica'), | ||
(6.3,2.9,5.6,1.8,'virginica'), | ||
(6.5,3,5.8,2.2,'virginica'), | ||
(7.6,3,6.6,2.1,'virginica'), | ||
(4.9,2.5,4.5,1.7,'virginica'), | ||
(7.3,2.9,6.3,1.8,'virginica'), | ||
(6.7,2.5,5.8,1.8,'virginica'), | ||
(7.2,3.6,6.1,2.5,'virginica'), | ||
(6.5,3.2,5.1,2,'virginica'), | ||
(6.4,2.7,5.3,1.9,'virginica'), | ||
(6.8,3,5.5,2.1,'virginica'), | ||
(5.7,2.5,5,2,'virginica'), | ||
(5.8,2.8,5.1,2.4,'virginica'), | ||
(6.4,3.2,5.3,2.3,'virginica'), | ||
(6.5,3,5.5,1.8,'virginica'), | ||
(7.7,3.8,6.7,2.2,'virginica'), | ||
(7.7,2.6,6.9,2.3,'virginica'), | ||
(6,2.2,5,1.5,'virginica'), | ||
(6.9,3.2,5.7,2.3,'virginica'), | ||
(5.6,2.8,4.9,2,'virginica'), | ||
(7.7,2.8,6.7,2,'virginica'), | ||
(6.3,2.7,4.9,1.8,'virginica'), | ||
(6.7,3.3,5.7,2.1,'virginica'), | ||
(7.2,3.2,6,1.8,'virginica'), | ||
(6.2,2.8,4.8,1.8,'virginica'), | ||
(6.1,3,4.9,1.8,'virginica'), | ||
(6.4,2.8,5.6,2.1,'virginica'), | ||
(7.2,3,5.8,1.6,'virginica'), | ||
(7.4,2.8,6.1,1.9,'virginica'), | ||
(7.9,3.8,6.4,2,'virginica'), | ||
(6.4,2.8,5.6,2.2,'virginica'), | ||
(6.3,2.8,5.1,1.5,'virginica'), | ||
(6.1,2.6,5.6,1.4,'virginica'), | ||
(7.7,3,6.1,2.3,'virginica'), | ||
(6.3,3.4,5.6,2.4,'virginica'), | ||
(6.4,3.1,5.5,1.8,'virginica'), | ||
(6,3,4.8,1.8,'virginica'), | ||
(6.9,3.1,5.4,2.1,'virginica'), | ||
(6.7,3.1,5.6,2.4,'virginica'), | ||
(6.9,3.1,5.1,2.3,'virginica'), | ||
(5.8,2.7,5.1,1.9,'virginica'), | ||
(6.8,3.2,5.9,2.3,'virginica'), | ||
(6.7,3.3,5.7,2.5,'virginica'), | ||
(6.7,3,5.2,2.3,'virginica'), | ||
(6.3,2.5,5,1.9,'virginica'), | ||
(6.5,3,5.2,2,'virginica'), | ||
(6.2,3.4,5.4,2.3,'virginica'), | ||
(5.9,3,5.1,1.8,'virginica') | ||
``` | ||
|
||
Now score the model. | ||
|
||
``` | ||
with input (model, sepal_length, sepal_width, petal_length, petal_width) as | ||
(select varchar(models.model), iris.sepal_length, iris.sepal_width, iris.petal_length, iris.petal_width | ||
from models, iris | ||
where models.id =1) | ||
select iris_score(varchar(model), float(sepal_length), float(sepal_width), float(petal_length), float(petal_width) ) from input | ||
``` | ||
|
||
 | ||
|
||
Lets now add a second model. | ||
|
||
``` | ||
from sklearn.linear_model import LinearRegression | ||
from sklearn import datasets | ||
import joblib | ||
import base64 | ||
train = datasets.load_iris().get("data") | ||
target = datasets.load_iris().get("target") | ||
lr = LinearRegression() | ||
lr = lr.fit(train, target) | ||
joblib.dump(lr, "linear.joblib") | ||
with open("linear.joblib", "rb") as file: | ||
file = file.read() | ||
b64model = base64.b64encode(file) | ||
print(b64model) | ||
with open("linearmodel.b64", "wb") as file: | ||
file.write(b64model) | ||
``` | ||
|
||
`db2 "insert into models (name, model) values('iris_linear', 'gANjc2tsZWFybi5saW5lYXJfbW9kZWwuX2Jhc2UKTGluZWFyUmVncmVzc2lvbgpxACmBcQF9cQIoWA0AAABmaXRfaW50ZXJjZXB0cQOIWAkAAABub3JtYWxpemVxBFgKAAAAZGVwcmVjYXRlZHEFWAYAAABjb3B5X1hxBohYBgAAAG5fam9ic3EHTlgIAAAAcG9zaXRpdmVxCIlYDgAAAG5fZmVhdHVyZXNfaW5fcQlLBFgFAAAAY29lZl9xCmNqb2JsaWIubnVtcHlfcGlja2xlCk51bXB5QXJyYXlXcmFwcGVyCnELKYFxDH1xDShYCAAAAHN1YmNsYXNzcQ5jbnVtcHkKbmRhcnJheQpxD1gFAAAAc2hhcGVxEEsEhXERWAUAAABvcmRlcnESWAEAAABDcRNYBQAAAGR0eXBlcRRjbnVtcHkKZHR5cGUKcRVYAgAAAGY4cRaJiIdxF1JxGChLA1gBAAAAPHEZTk5OSv////9K/////0sAdHEaYlgKAAAAYWxsb3dfbW1hcHEbiHVi68nYrtylvL9Y8XhnTIWkv/rvMoE9RM0/5OPuKf5+4z9YCQAAAF9yZXNpZHVlc3EcY251bXB5LmNvcmUubXVsdGlhcnJheQpzY2FsYXIKcR1oGEMIKlAuk6nXG0BxHoZxH1JxIFgFAAAAcmFua19xIUsEWAkAAABzaW5ndWxhcl9xImgLKYFxI31xJChoDmgPaBBLBIVxJWgSaBNoFGgYaBuIdWLKEu4Blxk5QAwt5IF2DRhALIyCyzdPC0AlwUUfAif+P1gKAAAAaW50ZXJjZXB0X3EmaB1oGEMIfB3OhRPfxz9xJ4ZxKFJxKVgQAAAAX3NrbGVhcm5fdmVyc2lvbnEqWAUAAAAxLjAuMnErdWIu')` | ||
If the model we were registering required a different number of inputs, we would need to register a new udf. Lets do that for the sake of demonstration, even though it is not technically necessary. | ||
|
||
``` | ||
CREATE FUNCTION iris_linear(varchar(1356), float, float, float, float) \ | ||
returns float LANGUAGE PYTHON parameter style \ | ||
NPSGENERIC FENCED NOT THREADSAFE NO FINAL CALL ALLOW PARALLEL NO DBINFO DETERMINISTIC NO EXTERNAL ACTION \ | ||
RETURNS NULL ON NULL INPUT NO SQL \ | ||
external name '/database/config/db2inst1/sqllib/function/routine/score.py' | ||
``` | ||
|
||
|
||
And score our model, this time as a linear regression model. | ||
|
||
|
||
``` | ||
with input (model, sepal_length, sepal_width, petal_length, petal_width) as | ||
(select varchar(models.model), iris.sepal_length, iris.sepal_width, iris.petal_length, iris.petal_width | ||
from models, iris | ||
where models.id =(select id from models where name='iris_linear')) | ||
select iris_linear(varchar(model), float(sepal_length), float(sepal_width), float(petal_length), float(petal_width) ) from input | ||
``` | ||
 | ||
|
Binary file added
BIN
+56.5 KB
...ne_Learning/In DB Model Deployment and Management/docs/images/linear_output.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added
BIN
+47.5 KB
...2_Machine_Learning/In DB Model Deployment and Management/docs/images/output.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.