Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add caching of mean and covar on ParticleState #686

Merged
merged 2 commits into from
Aug 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions stonesoup/types/_util.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
"""
Back port from Python 3.8: https://github.com/python/cpython/blob/4f100fe9f1c691145e3fa959ef324646e303cdf3/Lib/functools.py#L924-L976

LICENSE: https://github.com/python/cpython/blob/4f100fe9f1c691145e3fa959ef324646e303cdf3/LICENSE
Copyright (c) 2001-2022 Python Software Foundation. All rights reserved.
"""
# flake8: noqa
# TODO: Remove once support for Python 3.7 dropped; replace with functools

from threading import RLock

_NOT_FOUND = object()


class cached_property: # pragma: no cover
def __init__(self, func):
self.func = func
self.attrname = None
self.__doc__ = func.__doc__
self.lock = RLock()

def __set_name__(self, owner, name):
if self.attrname is None:
self.attrname = name
elif name != self.attrname:
raise TypeError(
"Cannot assign the same cached_property to two different names "
f"({self.attrname!r} and {name!r})."
)

def __get__(self, instance, owner=None):
if instance is None:
return self
if self.attrname is None:
raise TypeError(
"Cannot use cached_property instance without calling __set_name__ on it.")
try:
cache = instance.__dict__
except AttributeError: # not all objects have __dict__ (e.g. class defines slots)
msg = (
f"No '__dict__' attribute on {type(instance).__name__!r} "
f"instance to cache {self.attrname!r} property."
)
raise TypeError(msg) from None
val = cache.get(self.attrname, _NOT_FOUND)
if val is _NOT_FOUND:
with self.lock:
# check if another thread filled cache while we awaited lock
val = cache.get(self.attrname, _NOT_FOUND)
if val is _NOT_FOUND:
val = self.func(instance)
try:
cache[self.attrname] = val
except TypeError:
msg = (
f"The '__dict__' attribute on {type(instance).__name__!r} instance "
f"does not support item assignment for caching {self.attrname!r} property."
)
raise TypeError(msg) from None
return val
56 changes: 45 additions & 11 deletions stonesoup/types/state.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from .base import Type
from .particle import Particle
from .numeric import Probability
from ._util import cached_property # TODO: Change to functools once support for Python 3.7 dropped


class State(Type):
Expand Down Expand Up @@ -433,7 +434,15 @@ class ParticleState(State):
"""Particle State type

This is a particle state object which describes the state as a
distribution of particles"""
distribution of particles

Note
----
Once either :attr:`mean` or :attr:`covar` are called, both :attr:`state_vector`
and :attr:`weight` NumPy arrays will no longer be writable due to caching. If
replacing :attr:`state_vector` or :attr:`covar` on the state, the cache will
be cleared.
"""

state_vector: StateVectors = Property(doc='State vectors.')
weight: MutableSequence[Probability] = Property(default=None, doc='Weights of particles')
Expand Down Expand Up @@ -484,6 +493,33 @@ def __getitem__(self, item):
parent=p)
return particle

def _clear_cache(self):
if 'mean' in self.__dict__:
del self.__dict__["mean"]
if 'covar' in self.__dict__:
del self.__dict__["covar"]

@state_vector.setter
def state_vector(self, value):
self._clear_cache()
if value is not None:
value = np.asanyarray(value)
setattr(self, type(self).state_vector._property_name, value)

@weight.setter
def weight(self, value):
self._clear_cache()
if value is not None:
value = np.asanyarray(value)
setattr(self, type(self).weight._property_name, value)

@fixed_covar.setter
def fixed_covar(self, value):
# Don't need to worry about mean
if 'covar' in self.__dict__:
del self.__dict__["covar"]
setattr(self, type(self).fixed_covar._property_name, value)

@property
def particles(self):
return [particle for particle in self]
Expand All @@ -495,22 +531,20 @@ def __len__(self):
def ndim(self):
return self.state_vector.shape[0]

@property
@cached_property
def mean(self):
"""The state mean, equivalent to state vector"""
result = np.average(self.state_vector,
axis=1,
weights=self.weight)
# Convert type as may have type of weights
return result
self.state_vector.flags.writeable = False
self.weight.flags.writeable = False
return np.average(self.state_vector, axis=1, weights=self.weight)

@property
@cached_property
def covar(self):
if self.fixed_covar is not None:
return self.fixed_covar
cov = np.cov(self.state_vector, ddof=0, aweights=np.array(self.weight))
# Fix one dimensional covariances being returned with zero dimension
return cov
self.state_vector.flags.writeable = False
self.weight.flags.writeable = False
return np.cov(self.state_vector, ddof=0, aweights=self.weight)


State.register(ParticleState) # noqa: E305
Expand Down
33 changes: 33 additions & 0 deletions stonesoup/types/tests/test_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,39 @@ def test_particlestate_angle():
assert np.allclose(state.covar, CovarianceMatrix([[0.01, -1.5], [-1.5, 225]]))


def test_particlestate_cache():
num_particles = 10
weight = Probability(1/num_particles)
particles = StateVectors(np.concatenate(
(np.tile([[0]], num_particles//2), np.tile([[100]], num_particles//2)), axis=1))
weights = np.tile(weight, num_particles)

state = ParticleState(particles, weight=weights)
assert np.allclose(state.mean, StateVector([[50]]))
assert np.allclose(state.covar, CovarianceMatrix([[2500]]))

with pytest.raises(ValueError, match="read-only"):
state.state_vector += 10

with pytest.raises(ValueError, match="read-only"):
state.weight *= 0.5

state.state_vector = particles + 50 # Cache cleared
with pytest.raises(ValueError, match="read-only"):
state.weight *= 0.5 # But still not writable
state.weight = state.weight * 0.5
assert np.allclose(state.mean, StateVector([[100]]))
assert np.allclose(state.covar, CovarianceMatrix([[2500]]))

state = ParticleState(particles, weight=weights, fixed_covar=np.array([[1]]))
assert np.allclose(state.mean, StateVector([[50]]))
assert np.allclose(state.covar, CovarianceMatrix([[1]]))

state.fixed_covar = np.array([[2]])
assert np.allclose(state.mean, StateVector([[50]]))
assert np.allclose(state.covar, CovarianceMatrix([[2]]))


def test_ensemblestate():

# 1D
Expand Down