Skip to content

Commit

Permalink
[rc/3.2.x] LLVM bump for gfx950 target support (triton-lang#5417)
Browse files Browse the repository at this point in the history
This PR brings in required LLVM bumps and additional targets for gfx950
support.
- triton-lang#5040
- triton-lang#5064
- triton-lang#5180
- triton-lang#5242
- triton-lang#5392

Note this PR reverts the last two PRs to only focus on the LLVM upgrade
- triton-lang#5347 
- triton-lang#5191

---------

Co-authored-by: peterbell10 <[email protected]>
Co-authored-by: Hongtao Yu <[email protected]>
Co-authored-by: Lei Zhang <[email protected]>
Co-authored-by: Jungwook Park <[email protected]>
  • Loading branch information
5 people authored Dec 13, 2024
1 parent 7e401df commit f11c5ba
Show file tree
Hide file tree
Showing 14 changed files with 240 additions and 681 deletions.
2 changes: 1 addition & 1 deletion cmake/llvm-hash.txt
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1f20eee6dc367bd202895e3eedb03974a628ef16
86b69c31642e98f8357df62c09d118ad1da4e16a
4 changes: 0 additions & 4 deletions include/triton/Dialect/Triton/IR/TritonOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -727,10 +727,6 @@ def TT_ReduceOp: TT_Op<"reduce",
llvm::SmallVector<RankedTensorType> getInputTypes();
llvm::SmallVector<Type> getElementTypes();
unsigned getNumOperands();

// Returns the CombineOp iff this ReduceOp's region contains only
// one CombineOp other than the return, or nullptr if not applicable.
::mlir::Operation *getSingleCombiner();
}];
}

Expand Down
16 changes: 0 additions & 16 deletions lib/Dialect/Triton/IR/Ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -503,22 +503,6 @@ llvm::SmallVector<Type> ReduceOp::getElementTypes() {
return getElementTypesImpl(this->getOperands());
}

::mlir::Operation *ReduceOp::getSingleCombiner() {
if (getNumOperands() != 1 || getNumResults() != 1)
return nullptr;
Block *block = &(*getCombineOp().begin());
Operation *yield = block->getTerminator();
Operation *reduceOp = yield->getOperand(0).getDefiningOp();
if (!reduceOp || reduceOp->getNumOperands() != 2 ||
reduceOp->getNumResults() != 1)
return nullptr;
if (reduceOp->getOperand(0) != block->getArgument(0) ||
reduceOp->getOperand(1) != block->getArgument(1))
return nullptr;

return reduceOp;
}

unsigned ReduceOp::getNumOperands() { return this->getOperands().size(); }

//-- ScanOp --
Expand Down
4 changes: 2 additions & 2 deletions lib/Dialect/Triton/Transforms/Combine.td
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def CombineDotAddIPattern : Pat<
[(Constraint<CPred<"isZero($0)">> $c),
(Constraint<CPred<"res->hasOneUse()">, "dot result has a single use">)]>;
def CombineDotAddFPattern : Pat<
(Arith_AddFOp $d, (TT_DotOp:$res $a, $b, $c, $inputPrecision, $maxNumImpreciseAcc), $fastmath, $denorm),
(Arith_AddFOp $d, (TT_DotOp:$res $a, $b, $c, $inputPrecision, $maxNumImpreciseAcc), $fastmath),
(TT_DotOp $a, $b, $d, $inputPrecision, $maxNumImpreciseAcc, (location $res)),
[(Constraint<CPred<"isZero($0)">> $c),
(Constraint<CPred<"::llvm::cast<::mlir::IntegerAttr>($0).getInt() == 0">> $maxNumImpreciseAcc),
Expand All @@ -29,7 +29,7 @@ def CombineDotAddIRevPattern : Pat<
[(Constraint<CPred<"isZero($0)">> $c),
(Constraint<CPred<"res->hasOneUse()">, "dot result has a single use">)]>;
def CombineDotAddFRevPattern : Pat<
(Arith_AddFOp (TT_DotOp:$res $a, $b, $c, $inputPrecision, $maxNumImpreciseAcc), $d, $fastmath, $denorm),
(Arith_AddFOp (TT_DotOp:$res $a, $b, $c, $inputPrecision, $maxNumImpreciseAcc), $d, $fastmath),
(TT_DotOp $a, $b, $d, $inputPrecision, $maxNumImpreciseAcc, (location $res)),
[(Constraint<CPred<"isZero($0)">> $c),
(Constraint<CPred<"::llvm::cast<::mlir::IntegerAttr>($0).getInt() == 0">> $maxNumImpreciseAcc),
Expand Down
108 changes: 0 additions & 108 deletions test/Conversion/amd/tritongpu_to_llvm.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -62,111 +62,3 @@ module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 4 :
tt.return
}
}

// -----

#blocked1 = #triton_gpu.blocked<{sizePerThread = [2], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: atomic_add_f16
tt.func @atomic_add_f16(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg1 : tensor<256xi1, #blocked1>, %arg2 : tensor<256xf16, #blocked1>) {
%range = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #blocked1>
%base_ptr = tt.splat %arg0 : !tt.ptr<f16> -> tensor<256x!tt.ptr<f16>, #blocked1>
%ptr = tt.addptr %base_ptr, %range : tensor<256x!tt.ptr<f16>, #blocked1>, tensor<256xi32, #blocked1>
// CHECK: llvm.cond_br
// CHECK: llvm.atomicrmw fadd {{.*}} vector<2xf16>
%0 = tt.atomic_rmw fadd, relaxed, gpu, %ptr, %arg2, %arg1 : (tensor<256x!tt.ptr<f16>, #blocked1>, tensor<256xf16, #blocked1>, tensor<256xi1, #blocked1>) -> tensor<256xf16, #blocked1>
tt.return
}
}

// -----

#blocked2 = #triton_gpu.blocked<{sizePerThread = [2], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: atomic_add_bf16
tt.func @atomic_add_bf16(%arg0: !tt.ptr<bf16> {tt.divisibility = 16 : i32}, %arg1 : tensor<256xi1, #blocked2>, %arg2 : tensor<256xbf16, #blocked2>) {
%range = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #blocked2>
%base_ptr = tt.splat %arg0 : !tt.ptr<bf16> -> tensor<256x!tt.ptr<bf16>, #blocked2>
%ptr = tt.addptr %base_ptr, %range : tensor<256x!tt.ptr<bf16>, #blocked2>, tensor<256xi32, #blocked2>
// CHECK: llvm.cond_br
// CHECK: llvm.atomicrmw fadd {{.*}} vector<2xbf16>
%0 = tt.atomic_rmw fadd, relaxed, gpu, %ptr, %arg2, %arg1 : (tensor<256x!tt.ptr<bf16>, #blocked2>, tensor<256xbf16, #blocked2>, tensor<256xi1, #blocked2>) -> tensor<256xbf16, #blocked2>
tt.return
}
}

// -----

#blocked3 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [64], warpsPerCTA = [1], order = [0]}>
module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-warp" = 64 : i32} {
// CHECK-LABEL: reduce_dpp_max
tt.func @reduce_dpp_max(%arg0: tensor<64xf32, #blocked3>) {
// CHECK: rocdl.update.dpp
// CHECK-SAME: with 280, 15, 15, true : f32
// CHECK-NEXT: llvm.intr.maxnum

// CHECK-NEXT: rocdl.update.dpp
// CHECK-SAME: with 276, 15, 15, true : f32
// CHECK-NEXT: llvm.intr.maxnum

// CHECK-NEXT: rocdl.update.dpp
// CHECK-SAME: with 274, 15, 15, true : f32
// CHECK-NEXT: llvm.intr.maxnum

// CHECK-NEXT: rocdl.update.dpp
// CHECK-SAME: with 273, 15, 15, true : f32
// CHECK-NEXT: llvm.intr.maxnum

// CHECK-NEXT: rocdl.update.dpp
// CHECK-SAME: with 322, 10, 15, true : f32
// CHECK-NEXT: llvm.intr.maxnum

// CHECK-NEXT: rocdl.update.dpp
// CHECK-SAME: with 323, 15, 15, true : f32
// CHECK-NEXT: llvm.intr.maxnum

// CHECK: llvm.amdgcn.readlane
%0 = "tt.reduce"(%arg0) <{axis = 0 : i32}> ({
^bb0(%arg1: f32, %arg2: f32):
%1 = arith.maxnumf %arg1, %arg2 : f32
tt.reduce.return %1 : f32
}) : (tensor<64xf32, #blocked3>) -> f32
tt.return
}
}

// -----

#blocked4 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [64], warpsPerCTA = [1], order = [0]}>
module attributes {"triton_gpu.num-ctas" = 1 : i32, "triton_gpu.num-warps" = 1 : i32, "triton_gpu.threads-per-warp" = 64 : i32} {
// CHECK-LABEL: reduce_xor_max
tt.func @reduce_xor_max(%arg0: tensor<32xf32, #blocked4>) {
// CHECK: rocdl.ds_swizzle
// CHECK: llvm.intr.maxnum

// CHECK: rocdl.update.dpp
// CHECK-SAME: with 280, 15, 12, false : i32
// CHECK: rocdl.update.dpp
// CHECK-SAME: with 264, 15, 3, false : i32
// CHECK: llvm.intr.maxnum

// CHECK: rocdl.update.dpp
// CHECK-SAME: with 276, 15, 10, false : i32
// CHECK: rocdl.update.dpp
// CHECK-SAME: with 260, 15, 5, false : i32
// CHECK: llvm.intr.maxnum

// CHECK: rocdl.update.dpp
// CHECK-SAME: with 78, 15, 15, false : i32
// CHECK: llvm.intr.maxnum

// CHECK: rocdl.update.dpp
// CHECK-SAME: with 177, 15, 15, false : i32
%0 = "tt.reduce"(%arg0) <{axis = 0 : i32}> ({
^bb0(%arg1: f32, %arg2: f32):
%1 = arith.maxnumf %arg1, %arg2 : f32
tt.reduce.return %1 : f32
}) : (tensor<32xf32, #blocked4>) -> f32
tt.return
}
}
1 change: 0 additions & 1 deletion third_party/amd/include/Dialect/TritonAMDGPU/IR/Dialect.h
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@
#include "mlir/IR/Dialect.h"
#include "mlir/IR/PatternMatch.h"
#include "triton/Dialect/Triton/IR/Traits.h"

// clang-format off
#include "amd/include/Dialect/TritonAMDGPU/IR/Dialect.h.inc"
// clang-format on
Expand Down
11 changes: 0 additions & 11 deletions third_party/amd/include/TritonAMDGPUToLLVM/TargetUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,17 +19,6 @@ enum class ISAFamily {
// Deduces the corresponding ISA family for the given target gfx |arch|.
ISAFamily deduceISAFamily(llvm::StringRef arch);

// Here is a partial definition of DppCtrl enums. For the complete definition,
// please check:
// https://github.com/llvm/llvm-project/blob/8c75290/llvm/lib/Target/AMDGPU/SIDefines.h#L939
enum class DppCtrl : uint32_t {
QUAD_PERM_FIRST = 0,
ROW_SHL0 = 0x100,
ROW_SHR0 = 0x110,
BCAST15 = 0x142,
BCAST31 = 0x143
};

} // namespace mlir::triton::AMD

#endif // TRITON_CONVERSION_TRITONGPU_TO_LLVM_TARGETUTILS_H
41 changes: 21 additions & 20 deletions third_party/amd/lib/TritonAMDGPUToLLVM/LoadStoreOpToLLVM.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -768,11 +768,7 @@ struct AtomicRMWOpConversion
// tensor
if (tensorTy) {
auto valTy = cast<RankedTensorType>(val.getType());
Type elTy = valTy.getElementType();
vec = std::min<unsigned>(vec, llvm::isa<FloatType>(elTy) &&
elTy.getIntOrFloatBitWidth() == 16
? 2
: 1);
vec = std::min<unsigned>(vec, valTy.getElementType().isF16() ? 2 : 1);
// mask
numElems = tensorTy.getNumElements();
}
Expand All @@ -787,22 +783,13 @@ struct AtomicRMWOpConversion
auto vecTy = vec_ty(valueElemTy, vec);
auto retType = vec == 1 ? valueElemTy : vecTy;
SmallVector<Value> resultVals(elemsPerThread);
const bool f16v2 = vec == 2 && valueElemTy.isF16();
for (size_t i = 0; i < elemsPerThread; i += vec) {
Value rmwPtr = ptrElements[i];
// TODO: in case llMask is zero we can create only one branch for all
// elemsPerThread.
Value rmwMask = llMask ? and_(mask, maskElements[i]) : mask;

Value operand;
if (vec == 1) {
operand = valElements[i];
} else {
operand = undef(vecTy);
for (size_t ii = 0; ii < vec; ++ii)
operand =
insert_element(vecTy, operand, valElements[i + ii], i32_val(ii));
}

Value undefVal = undef(retType);
// Build blocks to bypass the atomic instruction for ~rmwMask.
auto *curBlock = rewriter.getInsertionBlock();
Expand All @@ -819,11 +806,25 @@ struct AtomicRMWOpConversion
auto maybeKind = matchAtomicOp(atomicRmwAttr);
// TODO: use rocdl.raw.buffer.atomic from ROCDL dialect to use efficient
// atomics for MI-* series of AMD GPU.
Value atom =
rewriter
.create<LLVM::AtomicRMWOp>(loc, *maybeKind, rmwPtr, operand,
atomicMemOrdering, StringRef("agent"))
.getResult();
Value atom = rewriter
.create<LLVM::AtomicRMWOp>(
loc, *maybeKind, rmwPtr, valElements[i],
atomicMemOrdering, StringRef("agent"))
.getResult();

// NV for the f16v2 case generates one packed instruction. We have to
// create two separate instructions since LLVM::AtomicRMWOp doesn't
// support this. Can be optimized out with rocdl.raw.buffer.atomic.
if (f16v2) {
Value atom2 =
rewriter
.create<LLVM::AtomicRMWOp>(
loc, *maybeKind, ptrElements[i + 1], valElements[i + 1],
atomicMemOrdering, StringRef("agent"))
.getResult();
auto tmp = insert_element(vecTy, undef(vecTy), atom, i32_val(0));
atom = insert_element(vecTy, tmp, atom2, i32_val(1)).getResult();
}
if (!tensorTy) {
if (atomicNeedsSharedMemory(op.getResult())) {
Value atomPtr =
Expand Down
Loading

0 comments on commit f11c5ba

Please sign in to comment.