Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][bufferization] Allow cyclic function graphs without tensors #68632

Merged
merged 1 commit into from
Oct 10, 2023

Conversation

matthias-springer
Copy link
Member

Cyclic function call graphs are generally not supported by One-Shot Bufferize. However, they can be allowed when a function does not have tensor arguments or results. This is because it is then no longer necessary that the callee will be bufferized before the caller.

Cyclic function call graphs are generally not supported by One-Shot Bufferize. However, they can be allowed when a function does not have tensor arguments or results. This is because it is then no longer necessary that the callee will be bufferized before the caller.
@llvmbot llvmbot added mlir mlir:bufferization Bufferization infrastructure labels Oct 9, 2023
@llvmbot
Copy link
Member

llvmbot commented Oct 9, 2023

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-bufferization

Changes

Cyclic function call graphs are generally not supported by One-Shot Bufferize. However, they can be allowed when a function does not have tensor arguments or results. This is because it is then no longer necessary that the callee will be bufferized before the caller.


Full diff: https://github.com/llvm/llvm-project/pull/68632.diff

3 Files Affected:

  • (modified) mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp (+14-1)
  • (modified) mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir (+6-6)
  • (modified) mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize.mlir (+21)
diff --git a/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp b/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp
index 417f457c8910ca9..786ebb23b457d52 100644
--- a/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp
+++ b/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp
@@ -274,6 +274,13 @@ static void equivalenceAnalysis(func::FuncOp funcOp,
   });
 }
 
+/// Return "true" if the given function signature has tensor semantics.
+static bool hasTensorSignature(func::FuncOp funcOp) {
+  auto isaTensor = [](Type t) { return isa<TensorType>(t); };
+  return llvm::any_of(funcOp.getFunctionType().getInputs(), isaTensor) ||
+         llvm::any_of(funcOp.getFunctionType().getResults(), isaTensor);
+}
+
 /// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
 /// callee-caller order (i.e. callees without callers first).
 /// Store the map of FuncOp to all its callers in `callerMap`.
@@ -297,10 +304,16 @@ getFuncOpsOrderedByCalls(ModuleOp moduleOp,
                   "without a unique ReturnOp";
     }
 
+    // Collect function calls and populate the caller map.
     numberCallOpsContainedInFuncOp[funcOp] = 0;
     return funcOp.walk([&](func::CallOp callOp) -> WalkResult {
       func::FuncOp calledFunction = getCalledFunction(callOp);
       assert(calledFunction && "could not retrieved called func::FuncOp");
+      // If the called function does not have any tensors in its signature, then
+      // it is not necessary to bufferize the callee before the caller.
+      if (!hasTensorSignature(calledFunction))
+        return WalkResult::skip();
+
       callerMap[calledFunction].insert(callOp);
       if (calledBy[calledFunction].insert(funcOp).second) {
         numberCallOpsContainedInFuncOp[funcOp]++;
@@ -310,7 +323,7 @@ getFuncOpsOrderedByCalls(ModuleOp moduleOp,
   });
   if (res.wasInterrupted())
     return failure();
-  // Iteratively remove function operation that do not call any of the
+  // Iteratively remove function operations that do not call any of the
   // functions remaining in the callCounter map and add them to the worklist.
   while (!numberCallOpsContainedInFuncOp.empty()) {
     auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
diff --git a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir
index fd74ae0b60dbbb8..ee0f71f668dc741 100644
--- a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir
+++ b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir
@@ -27,14 +27,14 @@ func.func @swappy(%cond1 : i1, %cond2 : i1, %t1 : tensor<f32>, %t2 : tensor<f32>
 
 // expected-error @-3 {{expected callgraph to be free of circular dependencies}}
 
-func.func @foo() {
-  call @bar() : () -> ()
-  return
+func.func @foo(%t: tensor<5xf32>) -> tensor<5xf32> {
+  %0 = call @bar(%t) : (tensor<5xf32>) -> (tensor<5xf32>)
+  return %0 : tensor<5xf32>
 }
 
-func.func @bar() {
-  call @foo() : () -> ()
-  return
+func.func @bar(%t: tensor<5xf32>) -> tensor<5xf32>{
+  %0 = call @foo(%t) : (tensor<5xf32>) -> (tensor<5xf32>)
+  return %0 : tensor<5xf32>
 }
 
 // -----
diff --git a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize.mlir b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize.mlir
index b9de4ba34e0e6d3..39f4835b28ffeb2 100644
--- a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize.mlir
+++ b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize.mlir
@@ -662,3 +662,24 @@ func.func @br_in_func(%t: tensor<5xf32>) -> tensor<5xf32> {
 ^bb1(%arg1 : tensor<5xf32>):
   func.return %arg1 : tensor<5xf32>
 }
+
+// -----
+
+// Cyclic call graphs with tensors are not supported by One-Shot Bufferize.
+// However, if a function signature does not have any tensor arguments or
+// results, calls to that function are not seen as an "edge" in the fuction
+// call graph.
+
+// CHECK-LABEL: func.func @foo(%{{.*}}: memref<5xf32>) -> memref<5xf32>
+func.func @foo(%m: memref<5xf32>) -> memref<5xf32> {
+  %0 = tensor.empty() : tensor<5xf32>
+  %1 = func.call @bar(%0, %m)
+      : (tensor<5xf32>, memref<5xf32>) -> (memref<5xf32>)
+  return %1 : memref<5xf32>
+}
+
+// CHECK: func.func @bar(%{{.*}}: memref<5xf32, strided<[?], offset: ?>>, %arg1: memref<5xf32>) -> memref<5xf32>
+func.func @bar(%t: tensor<5xf32>, %m: memref<5xf32>) -> memref<5xf32> {
+  %0 = func.call @foo(%m) : (memref<5xf32>) -> (memref<5xf32>)
+  return %0 : memref<5xf32>
+}

Copy link
Contributor

@nicolasvasilache nicolasvasilache left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
mlir:bufferization Bufferization infrastructure mlir
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants