Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[mlir][bufferization] Allow cyclic function graphs without tensors #68632

Merged
merged 1 commit into from
Oct 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,13 @@ static void equivalenceAnalysis(func::FuncOp funcOp,
});
}

/// Return "true" if the given function signature has tensor semantics.
static bool hasTensorSignature(func::FuncOp funcOp) {
auto isaTensor = [](Type t) { return isa<TensorType>(t); };
return llvm::any_of(funcOp.getFunctionType().getInputs(), isaTensor) ||
llvm::any_of(funcOp.getFunctionType().getResults(), isaTensor);
}

/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
Expand All @@ -297,10 +304,16 @@ getFuncOpsOrderedByCalls(ModuleOp moduleOp,
"without a unique ReturnOp";
}

// Collect function calls and populate the caller map.
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](func::CallOp callOp) -> WalkResult {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// If the called function does not have any tensors in its signature, then
// it is not necessary to bufferize the callee before the caller.
if (!hasTensorSignature(calledFunction))
return WalkResult::skip();

callerMap[calledFunction].insert(callOp);
if (calledBy[calledFunction].insert(funcOp).second) {
numberCallOpsContainedInFuncOp[funcOp]++;
Expand All @@ -310,7 +323,7 @@ getFuncOpsOrderedByCalls(ModuleOp moduleOp,
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// Iteratively remove function operations that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,14 @@ func.func @swappy(%cond1 : i1, %cond2 : i1, %t1 : tensor<f32>, %t2 : tensor<f32>

// expected-error @-3 {{expected callgraph to be free of circular dependencies}}

func.func @foo() {
call @bar() : () -> ()
return
func.func @foo(%t: tensor<5xf32>) -> tensor<5xf32> {
%0 = call @bar(%t) : (tensor<5xf32>) -> (tensor<5xf32>)
return %0 : tensor<5xf32>
}

func.func @bar() {
call @foo() : () -> ()
return
func.func @bar(%t: tensor<5xf32>) -> tensor<5xf32>{
%0 = call @foo(%t) : (tensor<5xf32>) -> (tensor<5xf32>)
return %0 : tensor<5xf32>
}

// -----
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -662,3 +662,24 @@ func.func @br_in_func(%t: tensor<5xf32>) -> tensor<5xf32> {
^bb1(%arg1 : tensor<5xf32>):
func.return %arg1 : tensor<5xf32>
}

// -----

// Cyclic call graphs with tensors are not supported by One-Shot Bufferize.
// However, if a function signature does not have any tensor arguments or
// results, calls to that function are not seen as an "edge" in the fuction
// call graph.

// CHECK-LABEL: func.func @foo(%{{.*}}: memref<5xf32>) -> memref<5xf32>
func.func @foo(%m: memref<5xf32>) -> memref<5xf32> {
%0 = tensor.empty() : tensor<5xf32>
%1 = func.call @bar(%0, %m)
: (tensor<5xf32>, memref<5xf32>) -> (memref<5xf32>)
return %1 : memref<5xf32>
}

// CHECK: func.func @bar(%{{.*}}: memref<5xf32, strided<[?], offset: ?>>, %arg1: memref<5xf32>) -> memref<5xf32>
func.func @bar(%t: tensor<5xf32>, %m: memref<5xf32>) -> memref<5xf32> {
%0 = func.call @foo(%m) : (memref<5xf32>) -> (memref<5xf32>)
return %0 : memref<5xf32>
}