Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement the remaining changes from #1314 #2092

Closed
ghpvnist opened this issue Mar 14, 2024 · 0 comments · Fixed by #2239
Closed

Implement the remaining changes from #1314 #2092

ghpvnist opened this issue Mar 14, 2024 · 0 comments · Fixed by #2239
Assignees

Comments

@ghpvnist
Copy link
Member

Since the change in #1314 is so large to review in one go, it's been put off for review for quite some time. I've split the implementation from the rest of this PR in #1964 to aim at merging this sooner than later. The remaining changes from this PR will be addressed following the reference_checklist.md once the implementation is merged.

@ghpvnist ghpvnist self-assigned this Mar 14, 2024
ghpvnist added a commit that referenced this issue Apr 23, 2024
This is part 3 of #1964 to implement the remaining parts of #1314.

One notable change in TypeInference.cpp is (C27), whose verification
differs whether element type is quantized.

We have the following constraints in the spec (excluding
quantization-related constraints C28-C33):

```
(I1) `lhs` tensor.
(I2) `rhs` tensor.
(I3) `window_strides` 1-dimensional tensor constant of type `si64`.
(I4) `padding` 2-dimensional tensor constant of type `si64`.
(I5) `lhs_dilation` 1-dimensional tensor constant of type `si64`.
(I6) `rhs_dilation` 1-dimensional tensor constant of type `si64`.
(I7) `window_reversal` 1-dimensional tensor constant of type `i1`.
(I8) `input_batch_dimension` constant of type `si64`.
(I9) `input_feature_dimension` constant of type `si64`.
(I10) `input_spatial_dimensions` 1-dimensional tensor constant of type `si64`.
(I11) `kernel_input_feature_dimension` constant of type `si64`.
(I12) `kernel_output_feature_dimension` constant of type `si64`.
(I13) `kernel_spatial_dimensions` 1-dimensional tensor constant of type `si64`.
(I14) `output_batch_dimension` constant of type `si64`.
(I15) `output_feature_dimension` constant of type `si64`.
(I16) `output_spatial_dimensions` 1-dimensional tensor constant of type `si64`.
(I17) `feature_group_count` constant of type `si64`.
(I18) `batch_group_count` constant of type `si64`.
(I19) `precision_config` variadic number of enums of `DEFAULT`, `HIGH`, and `HIGHEST`.
(C1) `N = rank(lhs) = rank(rhs)`.
(C2) `size(window_strides) = N - 2`.
(C3) `0 < window_strides`.
(C4) `shape(padding) = [N - 2, 2]`.
(C5) `size(lhs_dilation) = N - 2`.
(C6) `0 < lhs_dilation`.
(C7) `size(rhs_dilation) = N - 2`.
(C8) `0 < rhs_dilation`.
(C9) `size(window_reversal) = N - 2`.
(C10) `dim(lhs, input_batch_dimension) % batch_group_count = 0`.
(C11) `dim(lhs, input_feature_dimension) % feature_group_count = 0`.
(C12) `size(input_spatial_dimensions) = N - 2`.
(C13) Given `input_dimensions = [input_batch_dimension] +
     input_spatial_dimensions + [input_feature_dimension]`:
* `is_unique(input_dimensions)`.
* `0 <= input_dimensions < N`.
(C14) `dim(rhs, kernel_input_feature_dimension = dim(lhs, input_feature_dimension) / feature_group_count`.
(C15) `dim(rhs, kernel_output_feature_dimension) % batch_group_count = 0`.
(C16) `dim(rhs, kernel_output_feature_dimension) % feature_group_count = 0`.
(C17) `size(kernel_spatial_dimensions) = N - 2`.
(C18) Given `kernel_dimensions = kernel_spatial_dimensions +
      [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
* `is_unique(kernel_dimensions)`.
* `0 <= kernel_dimensions < N`.
(C19) `size(output_spatial_dimensions) = N - 2`.
(C20) Given `output_dimensions = [output_batch_dimension] +
      output_spatial_dimensions + [output_feature_dimension]`:
* `is_unique(output_dimensions)`.
* `0 <= output_dimensions < N`.
(C21) `0 < feature_group_count`.
(C22) `0 < batch_group_count`.
(C23) `feature_group_count = 1 or batch_group_count = 1`.
(C24) `size(precision_config) = 2`.
(C25) `dim(result, result_dim)` is defined as:
* `dim(lhs, input_batch_dimension) / batch_group_count` if `result_dim = output_batch_dimension`.
* `dim(rhs, kernel_output_feature_dimension)` if `result_dim = output_feature_dimension`.
* `num_windows` otherwise, where:
  * `output_spatial_dimensions[spatial_dim] = result_dim`.
  * `lhs_dim = input_spatial_dimensions[spatial_dim]`.
  * `rhs_dim = kernel_spatial_dimensions[spatial_dim]`.
  * `dilated_input_shape[lhs_dim] = dim(lhs, lhs_dim) = 0 ? 0 : (dim(lhs, lhs_dim) - 1) * lhs_dilation[spatial_dim] + 1`.
  * `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`.
  * `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) = 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`.
  * `is_empty_window[lhs_dim] = padded_input_shape[lhs_dim] = 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]`.
  * `num_windows = is_empty_window[lhs_dim] ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`.
(C26) `rank(result) = N`.
(C27) `element_type(lhs) = element_type(rhs) = element_type(result)`.
```

These constraints will be comprehensively covered by the following
tests:

```
I1: a) `lhs` tensor. (Covered by ODS).
I2: a) `rhs` tensor. (Covered by ODS).
I3: a) `window_strides` is not a 1-dimensional tensor. (Covered by ODS).
    b) element_type(`window_strides`) != `si64`. (Covered by ODS).
I4: a) `padding` is not a 2-dimensional tensor.
    b) element_type(`padding`) != `si64`. (Covered by ODS).
I5: a) `lhs_dilation` is not a 1-dimensional tensor. (Covered by ODS).
    b)  element_type(`lhs_dilation`) != `si64`. (Covered by ODS).
I6: a) `rhs_dilation` is not a 1-dimensional tensor. (Covered by ODS).
    b) element_type(`rhs_dilation`) != `si64`. (Covered by ODS).
I7: a) `window_reversal` is not a 1-dimensional tensor. (Covered by ODS).
    b) element_type(`window_reversal`) != `i1`. (Covered by ODS).
I8: a) element_type(`input_batch_dimension`) != `si64`. (Covered by ODS).
I9: a) element_type(`input_feature_dimension`) != `si64`. (Covered by ODS).
I10: a) `input_spatial_dimensions` is not a 1-dimensional tensor. (Covered by ODS).
     b) element_type(`input_spatial_dimensions`) != `si64`. (Covered by ODS).
I11: a) element_type(`kernel_input_feature_dimension`) != `si64`. (Covered by ODS).
I12: a) element_type(`kernel_output_feature_dimension`) != `si64`. (Covered by ODS).
I13: a) `kernel_spatial_dimensions` is not a 1-dimensional tensor. (Covered by ODS).
     b) element_type(`kernel_spatial_dimensions`) != `si64`. (Covered by ODS).
I14: a) element_type(`output_batch_dimension`) != `si64`. (Covered by ODS).
I15: a) element_type(`output_feature_dimension`) != `si64`. (Covered by ODS).
I16: a) `output_spatial_dimensions` is not a 1-dimensional tensor. (Covered by ODS).
     b) element_type(`output_spatial_dimensions`) != `si64`. (Covered by ODS).
I17: a) element_type(`feature_group_count`) != `si64`. (Covered by ODS).
I18: a) element_type(`batch_group_count`) != `si64`. (Covered by ODS).
I19: a) `precision_config` does not have variadic number of enums of `DEFAULT`, `HIGH`, and `HIGHEST`. (Covered by ODS).
C1: a) N = rank(`lhs`) != rank(`rhs`).
C2: a) size(`window_strides`) != N - 2.
C3: a) `window_strides[i]` <= 0 for any i in [0, size(`window_strides`)).
C4: a) dim(`padding`, 0) != N - 2.
    b) dim(`padding`, 1) != 2.
C5: a) size(`lhs_dilation`) != N - 2.
C6: a) `lhs_dilation[i]` <= 0 for any i in [0, size(`lhs_dilation`)).
C7: a) size(`rhs_dilation`) != N - 2.
C8: a) `rhs_dilation[i]` <= 0 for any i in [0, size(`rhs_dilation`)).
C9: a) size(`window_reversal`) != N - 2.
C10: a) `dim(lhs, input_batch_dimension) % batch_group_count != 0`.
C11: a) `dim(lhs, input_feature_dimension) % feature_group_count != 0`.
C12: a) size(`input_spatial_dimensions`) != N - 2.
C13: a) Given `input_dimensions = [input_batch_dimension] +
     input_spatial_dimensions + [input_feature_dimension]`:
     * Any dimensions in `input_dimensions` are not unique.
     b) Given `input_dimensions = [input_batch_dimension] +
     input_spatial_dimensions + [input_feature_dimension]`:
     * For any i in `input_dimensions`, i < 0.
     c) Given `input_dimensions = [input_batch_dimension] +
     input_spatial_dimensions + [input_feature_dimension]`:
     * For any i in `input_dimensions`, i >= N.
C14: a) `dim(rhs, kernel_input_feature_dimension != dim(lhs, input_feature_dimension) / feature_group_count`.
C15: a) `dim(rhs, kernel_output_feature_dimension) % batch_group_count != 0`.
C16: a) `dim(rhs, kernel_output_feature_dimension) % feature_group_count != 0`.
C17: a) size(`kernel_spatial_dimensions`) != N - 2.
C18: a) Given `kernel_dimensions = kernel_spatial_dimensions +
     [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
     * Any dimensions in `kernel_dimensions` are not unique.
     b) Given `kernel_dimensions = kernel_spatial_dimensions +
     [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
     * For any i in$ `kernel_dimensions`, i < 0.
     c) Given `kernel_dimensions = kernel_spatial_dimensions +
     [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
     * For any i in `kernel_dimensions`, i >= N.
C19: a) size(`output_spatial_dimensions`) != N - 2.
C20: a) Given `output_dimensions = [output_batch_dimension] +
     output_spatial_dimensions + [output_feature_dimension]`:
     * Any dimensions in `output_dimensions` are not unique.
     b) Given `output_dimensions = [output_batch_dimension] +
     output_spatial_dimensions + [output_feature_dimension]`:
     * For any i in `output_dimensions`, i < 0.
     c) Given `output_dimensions = [output_batch_dimension] +
     output_spatial_dimensions + [output_feature_dimension]`:
     * For any i in `output_dimensions`, i >= N.
C21: a) `feature_group_count <= 0`.
C22: a) `batch_group_count <= 0`.
C23: a) `feature_group_count` != 1 and `batch_group_count` != 1.
C24: a) size(`precision_config`) != 2.
C25: a) For result_dim in [0, N):
        `dim(result, result_dim)` != `dim(lhs, input_batch_dimension) / batch_group_count`, if `result_dim = output_batch_dimension`.
     b) For result_dim in [0, N):
        `dim(result, result_dim)` != `dim(rhs, kernel_output_feature_dimension)`, if `result_dim = output_feature_dimension`.
     c) For result_dim in [0, N):
        `dim(result, result_dim)` != `num_windows` otherwise, where:
       * `output_spatial_dimensions[spatial_dim] = result_dim`.
       * `lhs_dim = input_spatial_dimensions[spatial_dim]`.
       * `rhs_dim = kernel_spatial_dimensions[spatial_dim]`.
       * `dilated_input_shape[lhs_dim] = dim(lhs, lhs_dim) == 0 ? 0 : (dim(lhs, lhs_dim) - 1) * lhs_dilation[spatial_dim] + 1`.
       * `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`.
       * `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) == 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`.
       * `num_windows = (padded_input_shape[lhs_dim] == 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]) ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`.
C26: a) rank(result) != N.
C27: a) element_type(`lhs`) != element_type(`rhs`).
```

If we drop the "Covered by ODS" pieces, this will leave us with the
following test cases:

```
I4a: `padding` is not a 2-dimensional tensor.
C1a: rank(`lhs`) != rank(`rhs`) != N.
C2a: size(`window_strides`) != N - 2.
C3a: `window_strides[i]` <= 0 for any i in [0, size(`window_strides`)).
C4a: dim(`padding`, 0) != N - 2.
C4b: dim(`padding`, 1) != 2.
C5a: size(`lhs_dilation`) != N - 2.
C6a: `lhs_dilation[i]` <= 0 for any i in [0, size(`lhs_dilation`)).
C7a: size(`rhs_dilation`) != N - 2.
C8a: `rhs_dilation[i]` <= 0 for any i in [0, size(`rhs_dilation`)).
C9a: size(`window_reversal`) != N - 2.
C10a: `dim(lhs, input_batch_dimension) % batch_group_count != 0`.
C11a: `dim(lhs, input_feature_dimension) % feature_group_count != 0`.
C12a: size(`input_spatial_dimensions`) != N - 2.
C13a: Given `input_dimensions = [input_batch_dimension] +
      input_spatial_dimensions + [input_feature_dimension]`:
      * Any dimensions in `input_dimensions` are not unique.
C13b: Given `input_dimensions = [input_batch_dimension] +
      input_spatial_dimensions + [input_feature_dimension]`:
      * For any i in `input_dimensions`, i < 0.
C13c: Given `input_dimensions = [input_batch_dimension] +
      input_spatial_dimensions + [input_feature_dimension]`:
      * For any i in `input_dimensions`, i >= N.
C14a: `dim(rhs, kernel_input_feature_dimension != dim(lhs, input_feature_dimension) / feature_group_count`.
C15a: `dim(rhs, kernel_output_feature_dimension) % batch_group_count != 0`.
C16a: `dim(rhs, kernel_output_feature_dimension) % feature_group_count != 0`.
C17a: size(`kernel_spatial_dimensions`) != N - 2.
C18a: Given `kernel_dimensions = kernel_spatial_dimensions +
      [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
      * Any dimensions in `kernel_dimensions` are not unique.
C18b: Given `kernel_dimensions = kernel_spatial_dimensions +
      [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
      * For any i in$ `kernel_dimensions`, i < 0.
C18c: Given `kernel_dimensions = kernel_spatial_dimensions +
      [kernel_input_feature_dimension] + [kernel_output_feature_dimension]`:
      * For any i in `kernel_dimensions`, i >= N.
C19a: size(`output_spatial_dimensions`) != N - 2.
C20a: Given `output_dimensions = [output_batch_dimension] +
     output_spatial_dimensions + [output_feature_dimension]`:
     * Any dimensions in `output_dimensions` are not unique.
     b) Given `output_dimensions = [output_batch_dimension] +
     output_spatial_dimensions + [output_feature_dimension]`:
     * For any i in `output_dimensions`, i < 0.
     c) Given `output_dimensions = [output_batch_dimension] +
     output_spatial_dimensions + [output_feature_dimension]`:
     * For any i in `output_dimensions`, i >= N.
C21a: `feature_group_count <= 0`.
C22a: `batch_group_count <= 0`.
C23a: `feature_group_count` != 1 and `batch_group_count` != 1.
C24a: size(`precision_config`) != 2.
C25a: For result_dim in [0, N):
      `dim(result, result_dim)` != `dim(lhs, input_batch_dimension) / batch_group_count`, if `result_dim = output_batch_dimension`.
C25b: For result_dim in [0, N):
      `dim(result, result_dim)` != `dim(rhs, kernel_output_feature_dimension)`, if `result_dim = output_feature_dimension`.
C25c: For result_dim in [0, N):
      `dim(result, result_dim)` != `num_windows` otherwise, where:
        * `output_spatial_dimensions[spatial_dim] = result_dim`.
        * `lhs_dim = input_spatial_dimensions[spatial_dim]`.
        * `rhs_dim = kernel_spatial_dimensions[spatial_dim]`.
        * `dilated_input_shape[lhs_dim] = dim(lhs, lhs_dim) == 0 ? 0 : (dim(lhs, lhs_dim) - 1) * lhs_dilation[spatial_dim] + 1`.
        * `padded_input_shape[lhs_dim] = padding[spatial_dim, 0] + dilated_input_shape[lhs_dim] + padding[spatial_dim, 1]`.
        * `dilated_window_shape[lhs_dim] = dim(rhs, rhs_dim) == 0 ? 0 : (dim(rhs, rhs_dim) - 1) * rhs_dilation[spatial_dim] + 1`.
        * `num_windows = (padded_input_shape[lhs_dim] == 0 || dilated_window_shape[lhs_dim] > padded_input_shape[lhs_dim]) ? 0 : floor((padded_input_shape[lhs_dim] - dilated_window_shape[lhs_dim]) / window_strides[spatial_dim]) + 1`.
C26a: rank(result) != N.
C27a: element_type(`lhs`) != element_type(`rhs`).
```

Notes:
* (new C24) is left untouched as there are still pending action item
regarding the number of precision config values allowed in #879.

closes #2092
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
Status: Done
Development

Successfully merging a pull request may close this issue.

1 participant